scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: The finding that HLA class II compatibility of a child was more common for scleroderma patients than for controls, supports the possibility that microchimerism may be involved in the pathogenesis of sclerodma.

575 citations

Journal ArticleDOI
TL;DR: Adaptations of the targeting induced local lesions in genomes are reported, which help to understand gene function and effective reverse genetic strategies are increasingly in demand.
Abstract: With the completion of genome sequencing projects, emphasis in genomics has shifted from analyzing sequences to understanding gene function, and effective reverse genetic strategies are increasingly in demand. Here we report adaptations of the targeting induced local lesions in genomes (TILLING)

575 citations

Journal ArticleDOI
TL;DR: As childhood cancer survivors progress through adulthood, risk of subsequent neoplasms increases and patients surviving Hodgkin lymphoma are at greatest risk.
Abstract: Background The occurrence of subsequent neoplasms has direct impact on the quantity and quality of life in cancer survivors. We have expanded our analysis of these events in the Childhood Cancer Survivor Study (CCSS) to better understand the occurrence of these events as the survivor population ages. Methods The incidence of and risk for subsequent neoplasms occurring 5 years or more after the childhood cancer diagnosis were determined among 14 359 5-year survivors in the CCSS who were treated from 1970 through 1986 and who were at a median age of 30 years (range = 5–56 years) for this analysis. At 30 years after childhood cancer diagnosis, we calculated cumulative incidence at 30 years of subsequent neoplasms and calculated standardized incidence ratios (SIRs), excess absolute risks (EARs) for invasive second malignant neoplasms, and relative risks for subsequent neoplasms by use of multivariable Poisson regression. Results Among 14 359 5-year survivors, 1402 subsequently developed 2703 neoplasms. Cumulative incidence at 30 years after the childhood cancer diagnosis was 20.5% (95% confidence interval [CI] = 19.1% to 21.8%) for all subsequent neoplasms, 7.9% (95% CI = 7.2% to 8.5%) for second malignant neoplasms (excluding nonmelanoma skin cancer), 9.1% (95% CI = 8.1% to 10.1%) for nonmelanoma skin cancer, and 3.1% (95% CI = 2.5% to 3.8%) for meningioma. Excess risk was evident for all primary diagnoses (EAR = 2.6 per 1000 person-years, 95% CI = 2.4 to 2.9 per 1000 person-years; SIR = 6.0, 95% CI = 5.5 to 6.4), with the highest being for Hodgkin lymphoma (SIR = 8.7, 95% CI = 7.7 to 9.8) and Ewing sarcoma (SIR = 8.5, 95% CI = 6.2 to 11.7). In the Poisson multivariable analysis, female sex, older age at diagnosis, earlier treatment era, diagnosis of Hodgkin lymphoma, and treatment with radiation therapy were associated with increased risk of subsequent neoplasm. Conclusions As childhood cancer survivors progress through adulthood, risk of subsequent neoplasms increases. Patients surviving Hodgkin lymphoma are at greatest risk. There is no evidence of risk reduction with increasing duration of follow-up.

574 citations

Journal ArticleDOI
25 May 2017-Nature
TL;DR: Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape.
Abstract: Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity

574 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571