scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: This work developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, LRT, GERP, SiPhy, phyloP, and phastCons.
Abstract: The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p −12 ) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies

1,295 citations

Journal ArticleDOI
TL;DR: An illustration of the relation between odds ratios and receiver operating characteristic curves shows, for example, that a marker with an odds ratio of as high as 3 is in fact a very poor classification tool.
Abstract: A marker strongly associated with outcome (or disease) is often assumed to be effective for classifying persons according to their current or future outcome. However, for this assumption to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiologic studies. In this paper, an illustration of the relation between odds ratios and receiver operating characteristic curves shows, for example, that a marker with an odds ratio of as high as 3 is in fact a very poor classification tool. If a marker identifies 10% of controls as positive (false positives) and has an odds ratio of 3, then it will correctly identify only 25% of cases as positive (true positives). The authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker's ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. In addition, the serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.

1,294 citations

Journal ArticleDOI
TL;DR: The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression and can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Abstract: The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.

1,288 citations

Journal ArticleDOI
TL;DR: These studies demonstrate the feasibility and safety of using retroviral gene transduction for human gene therapy and have implications for the design of TIL with improved antitumor potency, as well as for the possible use of lymphocytes for the gene therapy of other diseases.
Abstract: Background and Methods. Treatment with tumor-infiltrating lymphocytes (TIL) plus interleukin-2 can mediate the regression of metastatic melanoma in approximately half of patients. To optimize this treatment approach and define the in vivo distribution and survival of TIL, we used retroviral-mediated gene transduction to introduce the gene coding for resistance to neomycin into human TIL before their infusion into patients — thus using the new gene as a marker for the infused cells. Results. Five patients received the gene-modified TIL. All the patients tolerated the treatment well, and no side effects due to the gene transduction were noted. The presence and expression of the neomycin-resistance gene were demonstrated in TIL from all the patients with Southern blot analysis and enzymatic assay for the neomycin phosphotransferase coded by the bacterial gene. Cells from four of the five patients grew successfully in high concentrations of G418, a neomycin analogue otherwise toxic to eukaryotic cell...

1,284 citations

Journal ArticleDOI
01 May 2004-Cancer
TL;DR: An international multidisciplinary panel of experts assembled to create clinical practice guidelines for the prevention, evaluation, and treatment of mucositis.
Abstract: BACKGROUND A frequent complication of anticancer treatment, oral and gastrointestinal (GI) mucositis, threatens the effectiveness of therapy because it leads to dose reductions, increases healthcare costs, and impairs patients' quality of life. The Multinational Association of Supportive Care in Cancer and the International Society for Oral Oncology assembled an international multidisciplinary panel of experts to create clinical practice guidelines for the prevention, evaluation, and treatment of mucositis. METHODS The panelists examined medical literature published from January 1966 through May 2002, presented their findings at two separate conferences, and then created a writing committee that produced two articles: the current study and another that codifies the clinical implications of the panel's findings in practice guidelines. RESULTS New evidence supports the view that oral mucositis is a complex process involving all the tissues and cellular elements of the mucosa. Other findings suggest that some aspects of mucositis risk may be determined genetically. GI proapoptotic and antiapoptotic gene levels change along the GI tract, perhaps explaining differences in the frequency with which mucositis occurs at different sites. Studies of mucositis incidence in clinical trials by quality and using meta-analysis techniques produced estimates of incidence that are presented herein for what to our knowledge may be a broader range of cancers than ever presented before. CONCLUSIONS Understanding the pathobiology of mucositis, its incidence, and scoring are essential for progress in research and care directed at this common side-effect of anticancer therapies. Cancer 2004;100(9 Suppl):1995–2025. © 2004 American Cancer Society.

1,282 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571