scispace - formally typeset
Search or ask a question
Institution

Humboldt University of Berlin

EducationBerlin, Germany
About: Humboldt University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Population & Medicine. The organization has 33671 authors who have published 61781 publications receiving 1908102 citations. The organization is also known as: Humboldt-Universität zu Berlin & Universitas Humboldtiana Berolinensis.


Papers
More filters
Journal ArticleDOI
TL;DR: The proteasome is an essential part of the authors' immune surveillance mechanisms: by generating peptides from intracellular antigens it provides peptides that are then 'presented' to T cells.
Abstract: The proteasome is an essential part of our immune surveillance mechanisms: by generating peptides from intracellular antigens it provides peptides that are then 'presented' to T cells. But proteasomes--the waste-disposal units of the cell--typically do not generate peptides for antigen presentation with high efficiency. How, then, does the proteasome adapt to serve the immune system well?

561 citations

Book
15 Aug 2000
TL;DR: In this paper, the authors present an analysis of the Dirac operator and twistor spinors for the Clifford algebras and spin representation, including principal bundles and connections.
Abstract: Clifford algebras and spin representation Spin structures Dirac operators Analytical properties of Dirac operators Eigenvalue estimates for the Dirac operator and twistor spinors Seiberg-Witten invariants Principal bundles and connections Bibliography Index.

561 citations

Journal ArticleDOI
TL;DR: Three similarity metrics that can be used to answer queries on process repositories are presented, including node matching similarity that compares the labels and attributes attached to process model elements; structural similarity that connects element labels as well as causal relations captured in the process model.

561 citations

Journal ArticleDOI
TL;DR: In this article, a review of the most recent advancements in utilization of various 2D nanomaterials for gas sensing is provided, where the focus is on the sensing performances provided by devices integrating 2D Nanostructures.
Abstract: Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In recent years 2D nanostructures of various materials including metal oxides, graphene, metal dichalcogenides, phosphorene, BN and MXenes, have demonstrated significant potential for gas sensors. This review aims to provide the most recent advancements in utilization of various 2D nanomaterials for gas sensing. The common methods for the preparation of 2D nanostructures are briefly summarized first. The focus is then placed on the sensing performances provided by devices integrating 2D nanostructures. Strategies for optimizing the sensing features are also discussed. By combining both the experimental results and the theoretical studies available, structure-properties correlations are discussed. The conclusion gives some perspectives on the open challenges and future prospects for engineering advanced 2D nanostructures for high-performance gas sensors devices.

560 citations

Journal ArticleDOI
TL;DR: It is shown that for systems in which all flux- have fixed signs, all elementary modes are given by the generating vectors of a convex cone and can, thus, be computed by an existing algorithm.
Abstract: A mathematical definition of the concept of elementary mode is given so as to apply to biochemical reaction systems subsisting at steady state. This definition relates to existing concepts of null-space vectors and includes a condition of simplicity. It is shown that for systems in which all flux- have fixed signs, all elementary modes are given by the generating vectors of a convex cone and can, thus, be computed by an existing algorithm. The present analysis allows for the more general case that some reactions can proceed in either direction. Basic ideas on how to compute the complete set of elementary modes in this situation are outlined and verified by way of several examples, with one of them repraenting glycolysis and gluconeogenesis. These examples show that the elementary modes can be interpreted in terms of the particular biochemical functions of the network. The relationships to (futile) substrate cycles are elucidated.

558 citations


Authors

Showing all 34115 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Peer Bork206697245427
Raymond J. Dolan196919138540
Stefan Schreiber1781233138528
Andreas Pfeiffer1491756131080
Thomas Hebbeker1481984114004
Thomas Lohse1481237101631
Jean Bousquet145128896769
Hermann Kolanoski145127996152
Josh Moss139101989255
R. D. Kass1381920107907
W. Kozanecki138149899758
U. Mallik137162597439
C. Haber135150798014
Christophe Royon134145390249
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

96% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

Technische Universität München
123.4K papers, 4M citations

94% related

Radboud University Nijmegen
83K papers, 3.2M citations

93% related

University of Zurich
124K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022747
20214,727
20204,083
20193,579
20183,143