scispace - formally typeset
Search or ask a question
Institution

Humboldt University of Berlin

EducationBerlin, Germany
About: Humboldt University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Population & Medicine. The organization has 33671 authors who have published 61781 publications receiving 1908102 citations. The organization is also known as: Humboldt-Universität zu Berlin & Universitas Humboldtiana Berolinensis.


Papers
More filters
Journal ArticleDOI
08 Aug 2013-Langmuir
TL;DR: Results give rise to a verified structural assignment of PDA wherein dihydroxyindole and indoledione units with different degrees of (un)saturation are covalently linked by C-C bonds between their benzene rings.
Abstract: Polydopamine (PDA) formed by the oxidation of dopamine is an important polymer, in particular, for coating various surfaces. It is composed of dihydroxyindole, indoledione, and dopamine units, which are assumed to be covalently linked. Although PDA has been applied in a manifold way, its structure is still under discussion. Similarities have been observed in melanins/eumelanins as naturally occurring, deeply colored polymer pigments derived from l-DOPA. Recently, an alternative structure was proposed for PDA wherein dihydroxyindoline, indolinedione, and eventually dopamine units are not covalently linked to each other but are held together by hydrogen bonding between oxygen atoms or π stacking. In this study, we show that this structural proposal is very unlikely to occur taking into account unambiguous results obtained by different analytical methods, among them 13C CPPI MAS NMR (cross-polarization polarization–inversion magic angle spinning NMR), 1H MAS NMR (magic angle spinning NMR), and ES-HRMS (elect...

795 citations

Journal ArticleDOI
TL;DR: If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems.
Abstract: Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems.

791 citations

Journal ArticleDOI
Felix Aharonian1, A. G. Akhperjanian1, A. R. Bazer-Bachi, M. Beilicke1, Wystan Benbow1, David Berge1, Konrad Bernlöhr1, Catherine Boisson, O. Bolz1, V. Borrel2, Ilana M. Braun1, E. Brion, A. M. Brown3, Rolf Bühler1, I. Büsching4, Timothé Boutelier5, Svenja Carrigan1, P. M. Chadwick3, L.-M. Chounet, G. Coignet, R. Cornils1, Luigi Costamante1, B. Degrange, Hugh Dickinson3, A. Djannati-Ataï, L. O'Connor-Drury6, Guillaume Dubus, Kathrin Egberts1, Dimitrios Emmanoulopoulos7, P. Espigat, C. Farnier, F. Feinstein, E. Ferrero1, A. Fiasson, G. Fontaine, Seb. Funk1, M. Fuling1, Y. A. Gallant, B. Giebels, J.F. Glicenstein, B. Glück8, P. Goret, C. Hadjichristidis3, D. Hauser1, M. Hauser7, G. Heinzelmann9, Gilles Henri5, German Hermann1, Jim Hinton1, A. Hoffmann10, Werner Hofmann1, M. Holleran4, S. Hoppe1, Dieter Horns1, A. Jacholkowska, O. C. de Jager4, Eckhard Kendziorra10, M. Kerschhaggl11, B. Khélifi, Nu. Komin, K. Kosack1, G. Lamanna, I. J. Latham3, R. Le Gallou3, Anne Lemiere, M. Lemoine-Goumard, Thomas Lohse11, Jean Michel Martin, Olivier Martineau-Huynh, A. Marcowith, Conor Masterson1, Gilles Maurin, T. J. L. McComb3, Emmanuel Moulin, M. de Naurois1, D. Nedbal1, S. J. Nolan3, A. Noutsos12, J.-P. Olive, K. J. Orford1, J. L. Osborne1, M. Panter1, Guy Pelletier5, P.-O. Petrucci, S. Pita, G. Pühlhofer1, Michael Punch, S. Ranchon, B. C. Raubenheimer4, M. Raue1, S. M. Rayner3, A. Reimer5, Olaf Reimer5, J. Ripken9, L. Rob13, L. Rolland, S. Rosier-Lees, Gavin Rowell1, V. Sahakian14, Andrea Santangelo1, L. Saugé5, S. Schlenker11, Reinhard Schlickeiser15, R. Schröder15, U. Schwanke11, S. Schwarzburg10, S. Schwemmer7, A. Shalchi15, Helene Sol, D. Spangler3, Felix Spanier5, R. Steenkamp16, C. Stegmann8, G. Superina, P. H. Tam7, J. P. Tavernet, Regis Terrier, M. Tluczykont, C. van Eldik1, G. Vasileiadis, Christo Venter4, J. P. Vialle, P. Vincent, Heinrich J. Völk1, Stefan Wagner7, Martin Ward3 
TL;DR: In this paper, the average flux observed during an extreme gamma-ray outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}
Abstract: The high-frequency peaked BL Lac PKS 2155-304 at redshift z=0.116 is a well-known VHE (>100 GeV) gamma-ray emitter. Since 2002 its VHE flux has been monitored using the H.E.S.S. stereoscopic array of imaging atmospheric-Cherenkov telescopes in Namibia. During the July 2006 dark period, the average VHE flux was measured to be more than ten times typical values observed from the object. This article focuses solely on an extreme gamma-ray outburst detected in the early hours of July 28, 2006 (MJD 53944). The average flux observed during this outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}$$\pm$$0.34_{\rm syst}$) $\times$ 10$^{-9}$ cm$^{-2}$ s$^{-1}$, corresponding to ~7 times the flux, I(>200 GeV), observed from the Crab Nebula. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10$^9 M_\odot$ black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.

788 citations

Journal ArticleDOI
M. G. Aartsen1, Rasha Abbasi2, Y. Abdou3, Markus Ackermann  +284 moreInstitutions (36)
TL;DR: These two neutrino-induced events could be a first indication of an astrophysical neutrinos flux; the moderate significance, however, does not permit a definitive conclusion at this time.
Abstract: We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 +/- 0.16 and 1.14 +/- 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current nu(e,mu,tau) ((nu) over bar (e,mu,tau)) or charged-current nu(e) ((nu) over bar (e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082 +/- 0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9 x 10(-3) (2.8 sigma) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.

786 citations

Journal ArticleDOI
TL;DR: The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.
Abstract: Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil-plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion ( Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.

785 citations


Authors

Showing all 34115 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Peer Bork206697245427
Raymond J. Dolan196919138540
Stefan Schreiber1781233138528
Andreas Pfeiffer1491756131080
Thomas Hebbeker1481984114004
Thomas Lohse1481237101631
Jean Bousquet145128896769
Hermann Kolanoski145127996152
Josh Moss139101989255
R. D. Kass1381920107907
W. Kozanecki138149899758
U. Mallik137162597439
C. Haber135150798014
Christophe Royon134145390249
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

96% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

Technische Universität München
123.4K papers, 4M citations

94% related

Radboud University Nijmegen
83K papers, 3.2M citations

93% related

University of Zurich
124K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022747
20214,727
20204,083
20193,579
20183,143