scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Indore

EducationIndore, Madhya Pradesh, India
About: Indian Institute of Technology Indore is a education organization based out in Indore, Madhya Pradesh, India. It is known for research contribution in the topics: Computer science & Chemistry. The organization has 1606 authors who have published 4803 publications receiving 66500 citations.


Papers
More filters
Journal ArticleDOI
01 Jul 2019-Heliyon
TL;DR: The Gardenia, traditional medicinal plant used from ancient time to increase appetite and other medicinal uses has been employed for the synthesis of superparamagnetic α-Fe2O3 nanoparticles proving them as a potential candidate for the biomedical applications.

43 citations

Journal ArticleDOI
02 Dec 2014-Langmuir
TL;DR: The self-oligomerization of serum albumins is found to be a reversible process; upon dilution, these oligomers dissociate into a native monomeric state.
Abstract: Proteins inside a cell remain in highly crowded environments, and this often affects their structure and activity. However, most of the earlier studies involving serum albumins were performed under dilute conditions, which lack biological relevance. The effect of protein–protein interactions on the structure and properties of serum albumins at physiological conditions have not yet been explored. Here, we report for the first time the effect of protein–protein and protein–crowder interactions on the structure and stability of two homologous serum albumins, namely, human serum albumin (HSA) and bovine serum albumin (BSA), at physiological conditions by using spectroscopic techniques and scanning electron microscopy (SEM). Concentration-dependent self-oligomerization and subsequent structural alteration of serum albumins have been explored by means of fluorescence and circular dichroism spectroscopy at pH 7.4. The excitation wavelength (λex) dependence of the intrinsic fluorescence and the corresponding exci...

43 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: A novel approach for protecting deep neural networks from adversarial attacks, i.e., methods that add well-crafted imperceptible modifications to the original inputs such that they are incorrectly classified with high confidence.
Abstract: This paper presents a novel approach for protecting deep neural networks from adversarial attacks, i.e., methods that add well-crafted imperceptible modifications to the original inputs such that they are incorrectly classified with high confidence. The proposed defence mechanism is inspired by the recent works mitigating the adversarial disturbances by the means of image reconstruction and denoising. However, unlike the previous works, we apply the reconstruction only for small and carefully selected image areas that are most influential to the current classification outcome. The selection process is guided by the class activation map responses obtained for multiple top-ranking class labels. The same regions are also the most prominent for the adversarial perturbations and hence most important to purify. The resulting inpainting task is substantially more tractable than the full image reconstruction, while still being able to prevent the adversarial attacks. Furthermore, we combine the selective image inpainting with wavelet based image denoising to produce a non differentiable layer that prevents attacker from using gradient backpropagation. Moreover, the proposed nonlinearity cannot be easily approximated with simple differentiable alternative as demonstrated in the experiments with Backward Pass Differentiable Approximation (BPDA) attack. Finally, we experimentally show that the proposed Class-specific Image Inpainting Defence (CIIDefence) is able to withstand several powerful adversarial attacks including the BPDA. The obtained results are consistently better compared to the other recent defence approaches.

43 citations

Journal ArticleDOI
TL;DR: The single-photon absorption on phenothiazines 3-7 reveals that substitution of 1,1,4,4-tetracyanobutadiene (TCBD) and a cyclohexa-2,5-diene-1, 4-diylidene-expanded TCBD unit results in strong intramolecular charge transfer and lowering of the LUMO energy level.
Abstract: A series of unsymmetrical and symmetrical push–pull phenothiazines (3–7) were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction and subsequent [2 + 2] cycloaddition–retroelectrocyclization reaction with tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). The effect of systematic variation of the number and nature of cyano-based acceptor TCNE and TCNQ units on the photophysical, electrochemical, and computational studies was investigated. The single-photon absorption on phenothiazines 3–7 reveals that substitution of 1,1,4,4-tetracyanobutadiene (TCBD) and a cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD unit results in strong intramolecular charge transfer and lowering of the LUMO energy level. The TCBD-linked and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD-linked phenothiazines 3–7 exhibit multiredox waves. The computational studies on phenothiazines 3–7 exhibit substantial stabilization of the LUMO with the increase in acceptor strength, which result...

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the possible hydrogen-assisted pathways for converting carbon dioxide into methane in the presence of hydrogen and improving its proportion in the biogas composition during anaerobic digestion through in-situ Biogas upgradation.
Abstract: Anaerobic digestion has been widely accepted for energy and resource recovery from biomass residues. However, the produced biogas from the process mainly composed of methane and carbon dioxide is lower in calorific content, which is a major drawback for its direct application as an energy fuel. Therefore, different biogas upgradation systems based on physical, chemical, and biological processes have been applied to either remove carbon dioxide and other gaseous constituents from the biogas or utilize carbon dioxide into methane. This review discusses the possible hydrogen-assisted pathways for converting carbon dioxide into methane in the presence of hydrogen and improving its proportion in the biogas composition during anaerobic digestion through in-situ biogas upgradation. Additionally, a co-production of hydrogen and methane in two-stage anaerobic digestion has been proposed for methane enrichment. Technical challenges, stabilization of process parameters, innovative modification and microbial pathways have been explored and discussed. The findings and prospects from this article could be an interesting state-of-the-art for optimizing process parameters during hydrogen-assisted pathways and its mainstream application on existing digestion systems.

42 citations


Authors

Showing all 1738 results

NameH-indexPapersCitations
Raghunath Sahoo10655637588
Biswajeet Pradhan9873532900
A. Kumar9650533973
Franco Meddi8447624084
Manish Sharma82140733361
Anindya Roy5930114306
Krishna R. Reddy5840011076
Sudipan De549910774
Sudip Chakraborty513439319
Shaikh M. Mobin5151511467
Ashok Kumar5040510001
Ankhi Roy492598634
Aditya Nath Mishra491397607
Ram Bilas Pachori481828140
Pragati Sahoo471336535
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

95% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202365
2022253
2021918
2020801
2019677
2018614