scispace - formally typeset
Search or ask a question
Institution

Kyungpook National University

EducationDaegu, South Korea
About: Kyungpook National University is a education organization based out in Daegu, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 20497 authors who have published 42107 publications receiving 834608 citations.


Papers
More filters
Proceedings Article
S. Chatrchyan1, Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2184 moreInstitutions (200)
31 Jul 2014

288 citations

Journal ArticleDOI
TL;DR: In this article, a family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red.
Abstract: A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.

287 citations

Journal ArticleDOI
TL;DR: The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.
Abstract: Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-α and IL-6 but not IL-1β and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-κB indicated by inhibition of nuclear translocation of NF-κB, NF-κB/DNA binding, and NF-κB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

287 citations

Journal ArticleDOI
TL;DR: The essential motifs within the 2nd and the 4th domains of βig-h3 are established, which interact with α3β1 integrin to mediate HCE cell adhesion to βig -h3 and suggest that other proteins containing Asp-Ile in their fas-1 domains could possibly function as cellAdhesion molecules.

286 citations

Journal ArticleDOI
TL;DR: The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress.
Abstract: Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24) and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20) contents in endophyte-associated cucumber plants evidenced salinity stress modulation. The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.

286 citations


Authors

Showing all 20671 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
David R. Jacobs1651262113892
Yang Yang1642704144071
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Inkyu Park1441767109433
Christopher George Tully1421843111669
Teruki Kamon1422034115633
Manfred Paulini1411791110930
Kazuhiko Hara1411956107697
Luca Lista1402044110645
Dong-Chul Son138137098686
Christoph Paus1371585100801
Frank Filthaut1351684103590
Andreas Warburton135157897496
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Chonnam National University
36.1K papers, 744.2K citations

97% related

Pusan National University
45K papers, 819.3K citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022317
20213,152
20203,071
20192,763
20182,664