scispace - formally typeset
Search or ask a question
Institution

Northwestern University

EducationEvanston, Illinois, United States
About: Northwestern University is a education organization based out in Evanston, Illinois, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 75430 authors who have published 188857 publications receiving 9463252 citations. The organization is also known as: Northwestern & NU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use population synthesis methods to calculate the properties and coalescence rates of double compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes.
Abstract: A new generation of ground-based interferometric detectors for gravitational waves is currently under construction or has entered the commissioning phase (Laser Interferometer Gravitational-wave Observatory [LIGO], VIRGO, GEO600, TAMA300). The purpose of these detectors is to observe gravitational waves from astrophysical sources and help improve our understanding of the source origin and physical properties. In this paper we study the most promising candidate sources for these detectors: inspiraling double compact objects. We use population synthesis methods to calculate the properties and coalescence rates of compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes. We also examine the formation channels available to double compact object binaries. We explicitly account for the evolution of low-mass helium stars and investigate the possibility of common-envelope evolution involving helium stars as well as two evolved stars. As a result we identify a significant number of new formation channels for double neutron stars, in particular, leading to populations with very distinct properties. We discuss the theoretical and observational implications of such populations, but we also note the need for hydrodynamical calculations to settle the question of whether such common-envelope evolution is possible. We also present and discuss the physical properties of compact object binaries and identify a number of robust, qualitative features as well as their origin. Using the calculated coalescence rates we compare our results to earlier studies and derive expected detection rates for LIGO. We find that our most optimistic estimate for the first LIGO detectors reach a couple of events per year and our most pessimistic estimate for advanced LIGO detectors exceed 10 events per year.

923 citations

Journal ArticleDOI
TL;DR: This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes - including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation - and progress towards selective growth of monodisperse samples.
Abstract: Single-walled carbon nanotubes tend to be produced in polydisperse mixtures with different lengths, diameters and electronic properties. This review article surveys the various techniques that have been developed for producing monodisperse samples from these mixtures. Selective growth techniques are also covered.

922 citations

Journal ArticleDOI
TL;DR: The importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed by animal models in which mutations in genes coding for core components of the clock result in disease, including cancer and disturbances to the sleep/wake cycle.
Abstract: During the past decade, the molecular mechanisms underlying the mammalian circadian clock have been defined. A core set of circadian clock genes common to most cells throughout the body code for proteins that feed back to regulate not only their own expression, but also that of clock output genes and pathways throughout the genome. The circadian system represents a complex multioscillatory temporal network in which an ensemble of coupled neurons comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus is entrained to the daily light/dark cycle and subsequently transmits synchronizing signals to local circadian oscillators in peripheral tissues. Only recently has the importance of this system to the regulation of such fundamental biological processes as the cell cycle and metabolism become apparent. A convergence of data from microarray studies, quantitative trait locus analysis, and mutagenesis screens demonstrates the pervasiveness of circadian regulation in biological systems. The importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed by animal models in which mutations in genes coding for core components of the clock result in disease, including cancer and disturbances to the sleep/wake cycle.

921 citations

Journal ArticleDOI
11 Feb 2009-JAMA
TL;DR: The results suggest that reinnervated muscles can produce sufficient EMG information for real-time control of advanced artificial arms, as well as improving the function of prosthetic arms.
Abstract: Context Improving the function of prosthetic arms remains a challenge, because access to the neural-control information for the arm is lost during amputation. A surgical technique called targeted muscle reinnervation (TMR) transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce electromyogram (EMG) signals on the surface of the skin that can be measured and used to control prosthetic arms. Objective To assess the performance of patients with upper-limb amputation who had undergone TMR surgery, using a pattern-recognition algorithm to decode EMG signals and control prosthetic-arm motions. Design, Setting, and Participants Study conducted between January 2007 and January 2008 at the Rehabilitation Institute of Chicago among 5 patients with shoulder-disarticulation or transhumeral amputations who underwent TMR surgery between February 2002 and October 2006 and 5 control participants without amputation. Surface EMG signals were recorded from all participants and decoded using a pattern-recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm. All participants were instructed to perform various arm movements, and their abilities to control the virtual prosthetic arm were measured. In addition, TMR patients used the same control system to operate advanced arm prosthesis prototypes. Main Outcome Measure Performance metrics measured during virtual arm movements included motion selection time, motion completion time, and motion completion (“success”) rate. Results The TMR patients were able to repeatedly perform 10 different elbow, wrist, and hand motions with the virtual prosthetic arm. For these patients, the mean motion selection and motion completion times for elbow and wrist movements were 0.22 seconds (SD, 0.06) and 1.29 seconds (SD, 0.15), respectively. These times were 0.06 seconds and 0.21 seconds longer than the mean times for control participants. For TMR patients, the mean motion selection and motion completion times for hand-grasp patterns were 0.38 seconds (SD, 0.12) and 1.54 seconds (SD, 0.27), respectively. These patients successfully completed a mean of 96.3% (SD, 3.8) of elbow and wrist movements and 86.9% (SD, 13.9) of hand movements within 5 seconds, compared with 100% (SD, 0) and 96.7% (SD, 4.7) completed by controls. Three of the patients were able to demonstrate the use of this control system in advanced prostheses, including motorized shoulders, elbows, wrists, and hands. Conclusion These results suggest that reinnervated muscles can produce sufficient EMG information for real-time control of advanced artificial arms.

920 citations

Journal ArticleDOI
08 Feb 2017-Neuron
TL;DR: A more pluralistic notion of neuroscience is advocated when it comes to the brain-behavior relationship: behavioral work provides understanding, whereas neural interventions test causality.

920 citations


Authors

Showing all 76189 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Ralph B. D'Agostino2261287229636
Daniel Levy212933194778
David Miller2032573204840
Ronald M. Evans199708166722
Michael Marmot1931147170338
Robert C. Nichol187851162994
Scott M. Grundy187841231821
Stuart H. Orkin186715112182
Michael A. Strauss1851688208506
Ralph Weissleder1841160142508
Patrick O. Brown183755200985
Aaron R. Folsom1811118134044
Valentin Fuster1791462185164
Ronald C. Petersen1781091153067
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023275
20221,183
202110,513
202010,260
20199,331
20188,301