scispace - formally typeset
Search or ask a question

Showing papers by "Northwestern University published in 2010"


Journal ArticleDOI
TL;DR: This work reviews recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks and provides a critical outline of emerging developments.
Abstract: Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.

4,908 citations


Journal ArticleDOI
26 Mar 2010-Science
TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Abstract: Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we review these strategies and describe applications of them in systems ranging from electronic eyeball cameras to deformable light-emitting displays. We conclude with some perspectives on routes to commercialization, new device opportunities, and remaining challenges for research.

4,127 citations


Journal ArticleDOI
TL;DR: This paper explains the key assumptions of each model, and outlines the differences between the models, to conclude with a discussion of factors to consider when choosing between the two models.
Abstract: There are two popular statistical models for meta-analysis, the fixed-effect model and the random-effects model. The fact that these two models employ similar sets of formulas to compute statistics, and sometimes yield similar estimates for the various parameters, may lead people to believe that the models are interchangeable. In fact, though, the models represent fundamentally different assumptions about the data. The selection of the appropriate model is important to ensure that the various statistics are estimated correctly. Additionally, and more fundamentally, the model serves to place the analysis in context. It provides a framework for the goals of the analysis as well as for the interpretation of the statistics. In this paper we explain the key assumptions of each model, and then outline the differences between the models. We conclude with a discussion of factors to consider when choosing between the two models. Copyright © 2010 John Wiley & Sons, Ltd.

3,883 citations


Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: The results identify several novel loci associated with plasma lipids that are also associated with CAD and provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
Abstract: Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

3,469 citations



Journal ArticleDOI
23 Jul 2010-Science
TL;DR: The synthesis of a MOF in which zinc centers are bridged with long, highly conjugated organic linkers, but in which the overall symmetry of the networks created prevents formation of interpenetrating networks is described.
Abstract: Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials

3,189 citations



Journal ArticleDOI
Koji Nakamura1, K. Hagiwara, Ken Ichi Hikasa2, Hitoshi Murayama3  +180 moreInstitutions (92)
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

2,788 citations


Journal ArticleDOI
22 Mar 2010-Small
TL;DR: Techniques for preparing such advanced materials via stable graphene oxide, highly reduced grapheneoxide, and graphene dispersions in aqueous and organic media are summarized with a forward outlook on their applications.
Abstract: Isolated graphene, a nanometer-thick two-dimensional analog of fullerenes and carbon nanotubes, has recently sparked great excitement in the scientific community given its excellent mechanical and electronic properties. Particularly attractive is the availability of bulk quantities of graphene as both colloidal dispersions and powders, which enables the facile fabrication of many carbon-based materials. The fact that such large amounts of graphene are most easily produced via the reduction of graphene oxide--oxygenated graphene sheets covered with epoxy, hydroxyl, and carboxyl groups--offers tremendous opportunities for access to functionalized graphene-based materials. Both graphene oxide and graphene can be processed into a wide variety of novel materials with distinctly different morphological features, where the carbonaceous nanosheets can serve as either the sole component, as in papers and thin films, or as fillers in polymer and/or inorganic nanocomposites. This Review summarizes techniques for preparing such advanced materials via stable graphene oxide, highly reduced graphene oxide, and graphene dispersions in aqueous and organic media. The excellent mechanical and electronic properties of the resulting materials are highlighted with a forward outlook on their applications.

2,397 citations



Journal ArticleDOI
TL;DR: This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates.
Abstract: Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.

Journal ArticleDOI
TL;DR: The Beta-value has a more intuitive biological interpretation, but the M-value is more statistically valid for the differential analysis of methylation levels, and is recommended for conducting differential methylation analysis and including the beta-value statistics when reporting the results to investigators.
Abstract: High-throughput profiling of DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics to measure methylation levels. However, there are no detailed studies of their relations and their strengths and limitations. We demonstrate that the relationship between the Beta-value and M-value methods is a Logit transformation, and show that the Beta-value method has severe heteroscedasticity for highly methylated or unmethylated CpG sites. In order to evaluate the performance of the Beta-value and M-value methods for identifying differentially methylated CpG sites, we designed a methylation titration experiment. The evaluation results show that the M-value method provides much better performance in terms of Detection Rate (DR) and True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites. Imposing a minimum threshold of difference can improve the performance of the M-value method but not the Beta-value method. We also provide guidance for how to select the threshold of methylation differences. The Beta-value has a more intuitive biological interpretation, but the M-value is more statistically valid for the differential analysis of methylation levels. Therefore, we recommend using the M-value method for conducting differential methylation analysis and including the Beta-value statistics when reporting the results to investigators.

Journal ArticleDOI
TL;DR: These guidelines are intended for use by physicians in all medical specialties who perform direct patient care, with an emphasis on the care of patients in hospitals and long-term care facilities.
Abstract: Guidelines for the diagnosis, prevention, and management of persons with catheter-associated urinary tract infection (CA-UTI), both symptomatic and asymptomatic, were prepared by an Expert Panel of the Infectious Diseases Society of America. The evidence-based guidelines encompass diagnostic criteria, strategies to reduce the risk of CA-UTIs, strategies that have not been found to reduce the incidence of urinary infections, and management strategies for patients with catheter-associated asymptomatic bacteriuria or symptomatic urinary tract infection. These guidelines are intended for use by physicians in all medical specialties who perform direct patient care, with an emphasis on the care of patients in hospitals and long-term care facilities.

Journal ArticleDOI
TL;DR: The authors provide a framework for analyzing the three main decisions that shape the corporate information environment in a capital markets setting: (1) managers' voluntary reporting and disclosure decisions, (2) reporting and disclosures mandated by regulators, and (3) reporting decisions by third-party intermediaries.
Abstract: The corporate information environment develops endogenously as a consequence of information asymmetries and agency problems between investors, entrepreneurs, and managers. We provide a framework for analyzing the three main decisions that shape the corporate information environment in a capital markets setting: (1) managers’ voluntary reporting and disclosure decisions, (2) reporting and disclosures mandated by regulators, and (3) reporting decisions by third-party intermediaries (analysts). We review current research on disclosure regulation, information intermediaries, and the determinants and economic consequences of corporate disclosure and financial reporting decisions. We conclude that in the last ten years, research has generated a number of useful insights. Despite this progress, we call for researchers to consider interdependencies between the various decisions that shape the corporate information environment and highlight changes in the economic financial environment that raise new and interesting issues for researchers to address.

Journal ArticleDOI
TL;DR: It is reported that GO is an amphiphile with hydrophilic edges and a more hydrophobic basal plane, and the ease of its conversion to chemically modified graphene could enable new opportunities in solution processing of functional materials.
Abstract: Graphite oxide sheet, now called graphene oxide (GO), is the product of chemical exfoliation of graphite and has been known for more than a century. GO has been largely viewed as hydrophilic, presumably due to its excellent colloidal stability in water. Here we report that GO is an amphiphile with hydrophilic edges and a more hydrophobic basal plane. GO can act like a surfactant, as measured by its ability to adsorb on interfaces and lower the surface or interfacial tension. Since the degree of ionization of the edge −COOH groups is affected by pH, GO’s amphiphilicity can be tuned by pH. In addition, size-dependent amphiphilicity of GO sheets is observed. Since each GO sheet is a single molecule as well as a colloidal particle, the molecule−colloid duality makes it behave like both a molecular and a colloidal surfactant. For example, GO is capable of creating highly stable Pickering emulsions of organic solvents like solid particles. It can also act as a molecular dispersing agent to process insoluble mat...

Journal ArticleDOI
TL;DR: A material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin that provides new capabilities for implantable and surgical devices is described.
Abstract: Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices. Electronics that are capable of intimate integration with the surfaces of biological tissues create opportunities for improving animal/machine interfaces. A bio-interfaced system of ultrathin electronics supported by bioresorbable silk-fibroin substrates is now presented. Mounting such devices on tissue and then allowing the silk to dissolve initiates a conformal wrapping process that is driven by capillary forces.

Journal ArticleDOI
M. Punturo, M. R. Abernathy1, Fausto Acernese2, Benjamin William Allen3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia6, M. G. Beker7, N. Beveridge1, S. Birindelli8, Suvadeep Bose9, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik10, Enrico Calloni, G. Cella, E. Chassande Mottin6, Simon Chelkowski11, Andrea Chincarini, John A. Clark12, E. Coccia13, C. N. Colacino, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, G. De Luca, R. De Salvo15, T. Dent12, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets7, V. Fafone13, Paolo Falferi16, R. Flaminio17, J. Franc17, F. Frasconi, Andreas Freise11, Paul Fulda11, Jonathan R. Gair18, G. Gemme, A. Gennai11, A. Giazotto, Kostas Glampedakis19, M. Granata6, Hartmut Grote3, G. M. Guidi20, G. D. Hammond1, Mark Hannam21, Jan Harms22, D. Heinert23, Martin Hendry1, Ik Siong Heng1, Eric Hennes7, Stefan Hild1, J. H. Hough, Sascha Husa24, S. H. Huttner1, Gareth Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas19, Badri Krishnan24, M. Lorenzini, Harald Lück3, Ettore Majorana, Ilya Mandel25, Vuk Mandic22, I. W. Martin1, C. Michel17, Y. Minenkov13, N. Morgado17, Simona Mosca, B. Mours26, H. Müller–Ebhardt3, P. G. Murray1, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, D. Passuello, L. Pinard17, Rosa Poggiani28, P. Popolizio, Mirko Prato, P. Puppo, D. S. Rabeling7, P. Rapagnani29, Jocelyn Read24, Tania Regimbau8, H. Rehbein3, Stuart Reid1, Luciano Rezzolla24, F. Ricci29, F. Richard, A. Rocchi, Sheila Rowan1, Albrecht Rüdiger3, Benoit Sassolas17, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz, Paul Seidel, Alicia M. Sintes24, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin14, Andre Thüring3, J. F. J. van den Brand7, C. van Leewen7, M. van Veggel1, C. Van Den Broeck12, Alberto Vecchio11, John Veitch11, F. Vetrano20, A. Viceré20, Sergey P. Vyatchanin14, Benno Willke3, Graham Woan1, P. Wolfango30, Kazuhiro Yamamoto3 
TL;DR: The third-generation ground-based observatory Einstein Telescope (ET) project as discussed by the authors is currently in its design study phase, and it can be seen as the first step in this direction.
Abstract: Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

Journal ArticleDOI
TL;DR: Understanding how HPV oncoproteins modify these activities provides novel insights into the basic mechanisms of oncogenesis, which are crucial regulators of cell cycle progression, telomere maintenance, apoptosis and chromosomal stability.
Abstract: An association between human papillomavirus (HPV) infection and the development of cervical cancer was initially reported over 30 years ago, and today there is overwhelming evidence that certain subtypes of HPV are the causative agents of these malignancies. The p53 and retinoblastoma proteins are well-characterized targets of the HPV E6 and E7 oncoproteins, but recent studies have shown that the alteration of additional pathways are equally important for transformation. These additional factors are crucial regulators of cell cycle progression, telomere maintenance, apoptosis and chromosomal stability. Understanding how HPV oncoproteins modify these activities provides novel insights into the basic mechanisms of oncogenesis.

Journal ArticleDOI
TL;DR: Computational modelling is used to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area that had high storage capacities for hydrogen and carbon dioxide and was in excellent agreement with predictions from modelling.
Abstract: Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

Journal ArticleDOI
TL;DR: This article reviews and critically evaluates historical and contemporary research on simulation‐based medical education (SBME) and presents and discusses 12 features and best practices that teachers should know in order to use medical simulation technology to maximum educational benefit.
Abstract: Objectives This article reviews and critically evaluates historical and contemporary research on simulation-based medical education (SBME). It also presents and discusses 12 features and best practices of SBME that teachers should know in order to use medical simulation technology to maximum educational benefit. Methods This qualitative synthesis of SBME research and scholarship was carried out in two stages. Firstly, we summarised the results of three SBME research reviews covering the years 1969–2003. Secondly, we performed a selective, critical review of SBME research and scholarship published during 2003–2009. Results The historical and contemporary research synthesis is reported to inform the medical education community about 12 features and best practices of SBME: (i) feedback; (ii) deliberate practice; (iii) curriculum integration; (iv) outcome measurement; (v) simulation fidelity; (vi) skill acquisition and maintenance; (vii) mastery learning; (viii) transfer to practice; (ix) team training; (x) high-stakes testing; (xi) instructor training, and (xii) educational and professional context. Each of these is discussed in the light of available evidence. The scientific quality of contemporary SBME research is much improved compared with the historical record. Conclusions Development of and research into SBME have grown and matured over the past 40 years on substantive and methodological grounds. We believe the impact and educational utility of SBME are likely to increase in the future. More thematic programmes of research are needed. Simulation-based medical education is a complex service intervention that needs to be planned and practised with attention to organisational contexts. Medical Education 2010: 44: 50–63

Journal ArticleDOI
TL;DR: Patients with pCR after chemoradiation have better long-term outcome than do those without pCR, and pCR might be indicative of a prognostically favourable biological tumour profile with less propensity for local or distant recurrence and improved survival.
Abstract: Summary Background Locally advanced rectal cancer is usually treated with preoperative chemoradiation. After chemoradiation and surgery, 15–27% of the patients have no residual viable tumour at pathological examination, a pathological complete response (pCR). This study established whether patients with pCR have better long-term outcome than do those without pCR. Methods In PubMed, Medline, and Embase we identified 27 articles, based on 17 different datasets, for long-term outcome of patients with and without pCR. 14 investigators agreed to provide individual patient data. All patients underwent chemoradiation and total mesorectal excision. Primary outcome was 5-year disease-free survival. Kaplan-Meier survival functions were computed and hazard ratios (HRs) calculated, with the Cox proportional hazards model. Subgroup analyses were done to test for effect modification by other predicting factors. Interstudy heterogeneity was assessed for disease-free survival and overall survival with forest plots and the Q test. Findings 484 of 3105 included patients had a pCR. Median follow-up for all patients was 48 months (range 0–277). 5-year crude disease-free survival was 83·3% (95% CI 78·8–87·0) for patients with pCR (61/419 patients had disease recurrence) and 65·6% (63·6–68·0) for those without pCR (747/2263; HR 0·44, 95% CI 0·34–0·57; p Q test and forest plots did not suggest significant interstudy variation. The adjusted HR for pCR for failure was 0·54 (95% CI 0·40–0·73), indicating that patients with pCR had a significantly increased probability of disease-free survival. The adjusted HR for disease-free survival for administration of adjuvant chemotherapy was 0·91 (95% CI 0·73–1·12). The effect of pCR on disease-free survival was not modified by other prognostic factors. Interpretation Patients with pCR after chemoradiation have better long-term outcome than do those without pCR. pCR might be indicative of a prognostically favourable biological tumour profile with less propensity for local or distant recurrence and improved survival. Funding None.

Journal ArticleDOI
TL;DR: Instrumental variable (IV) methods are commonly used in accounting research (e.g., earnings management, corporate governance, executive compensation, and disclosure research) when the regressor variables are endogenous as mentioned in this paper.

Journal ArticleDOI
TL;DR: It is reported that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway.
Abstract: Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.

Journal ArticleDOI
TL;DR: The authors review current research on the three main decisions that shape the corporate information environment in capital market settings: (1) managers' voluntary disclosure decisions, (2) disclosures mandated by regulators, and (3) reporting decisions by analysts.

Journal ArticleDOI
TL;DR: Institutional Affiliations Chair Costanzo MR: Midwest Heart Foundation, Lombard Illinois, USA Task Force 1 Dipchand A: Hospital for Sick Children, Toronto Ontario, Canada; Starling R: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Starlings R: University of Chicago, Chicago, Illinois,USA; Chan M: university of Alberta, Edmonton, Alberta, Canada ; Desai S: Inova Fairfax Hospital, Fairfax, Virginia, USA.
Abstract: Institutional Affiliations Chair Costanzo MR: Midwest Heart Foundation, Lombard Illinois, USA Task Force 1 Dipchand A: Hospital for Sick Children, Toronto Ontario, Canada; Starling R: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Anderson A: University of Chicago, Chicago, Illinois, USA; Chan M: University of Alberta, Edmonton, Alberta, Canada; Desai S: Inova Fairfax Hospital, Fairfax, Virginia, USA; Fedson S: University of Chicago, Chicago, Illinois, USA; Fisher P: Ochsner Clinic, New Orleans, Louisiana, USA; Gonzales-Stawinski G: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Martinelli L: Ospedale Niguarda, Milano, Italy; McGiffin D: University of Alabama, Birmingham, Alabama, USA; Parisi F: Ospedale Pediatrico Bambino Gesu, Rome, Italy; Smith J: Freeman Hospital, Newcastle upon Tyne, UK Task Force 2 Taylor D: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Meiser B: University of Munich/Grosshaden, Munich, Germany; Baran D: Newark Beth Israel Medical Center, Newark, New Jersey, USA; Carboni M: Duke University Medical Center, Durham, North Carolina, USA; Dengler T: University of Hidelberg, Heidelberg, Germany; Feldman D: Minneapolis Heart Institute, Minneapolis, Minnesota, USA; Frigerio M: Ospedale Niguarda, Milano, Italy; Kfoury A: Intermountain Medical Center, Murray, Utah, USA; Kim D: University of Alberta, Edmonton, Alberta, Canada; Kobashigawa J: Cedar-Sinai Heart Institute, Los Angeles, California, USA; Shullo M: University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Stehlik J: University of Utah, Salt Lake City, Utah, USA; Teuteberg J: University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Uber P: University of Maryland, Baltimore, Maryland, USA; Zuckermann A: University of Vienna, Vienna, Austria. Task Force 3 Hunt S: Stanford University, Palo Alto, California, USA; Burch M: Great Ormond Street Hospital, London, UK; Bhat G: Advocate Christ Medical Center, Oak Lawn, Illinois, USA; Canter C: St. Louis Children Hospital, St. Louis, Missouri, USA; Chinnock R: Loma Linda University Children's Hospital, Loma Linda, California, USA; Crespo-Leiro M: Hospital Universitario A Coruna, La Coruna, Spain; Delgado R: Texas Heart Institute, Houston, Texas, USA; Dobbels F: Katholieke Universiteit Leuven, Leuven, Belgium; Grady K: Northwestern University, Chicago, Illlinois, USA; Kao W: University of Wisconsin, Madison Wisconsin, USA; Lamour J: Montefiore Medical Center, New York, New York, USA; Parry G: Freeman Hospital, Newcastle upon Tyne, UK; Patel J: Cedar-Sinai Heart Institute, Los Angeles, California, USA; Pini D: Istituto Clinico Humanitas, Rozzano, Italy; Pinney S: Mount Sinai Medical Center, New York, New York, USA; Towbin J: Cincinnati Children's Hospital, Cincinnati, Ohio, USA; Wolfel G: University of Colorado, Denver, Colorado, USA Independent Reviewers Delgado D: University of Toronto, Toronto, Ontario, Canada; Eisen H: Drexler University College of Medicine, Philadelphia, Pennsylvania, USA; Goldberg L: University of Pennsylvania, Philadelphia, Pennsylvania, USA; Hosenpud J: Mayo Clinic, Jacksonville, Florida, USA; Johnson M: University of Wisconsin, Madison, Wisconsin, USA; Keogh A: St Vincent Hospital, Sidney, New South Wales, Australia; Lewis C: Papworth Hospital Cambridge, UK; O'Connell J: St. Joseph Hospital, Atlanta, Georgia, USA; Rogers J: Duke University Medical Center, Durham, North Carolina, USA; Ross H: University of Toronto, Toronto, Ontario, Canada; Russell S: Johns Hopkins Hospital, Baltimore, Maryland, USA; Vanhaecke J: University Hospital Gasthuisberg, Leuven, Belgium.

Journal ArticleDOI
TL;DR: The ASRA consensus statements represent the collective experience of recognized experts in the field of neuraxial anesthesia and anticoagulation and are based on case reports, clinical series, pharmacology, hematology, and risk factors for surgical bleeding.

Journal ArticleDOI
TL;DR: The strategies for using molecular self‐assembly as a toolbox to produce peptide amphiphile nanostructures and materials are highlighted and efforts to translate this technology into applications as therapeutics are reviewed.
Abstract: Peptide amphiphiles are a class of molecules that combine the structural features of amphiphilic surfactants with the functions of bioactive peptides and are known to assemble into a variety of nanostructures. A specific type of peptide amphiphiles are known to self-assemble into one-dimensional nanostructures under physiological conditions, predominantly nanofibers with a cylindrical geometry. The resultant nanostructures could be highly bioactive and are of great interest in many biomedical applications, including tissue engineering, regenerative medicine, and drug delivery. In this context, we highlight our strategies for using molecular self-assembly as a toolbox to produce peptide amphiphile nanostructures and materials and efforts to translate this technology into applications as therapeutics. We also review our recent progress in using these materials for treating spinal cord injury, inducing angiogenesis, and for hard tissue regeneration and replacement.

Journal ArticleDOI
TL;DR: In this article, the authors introduce a new "pinball" framework of new media's impact on relationships with customers and identify key new media phenomena which companies should take into account when managing their relationships with customer in the new media universe.
Abstract: Recent years have witnessed the rise of new media channels such as Facebook, YouTube, Google, and Twitter, which enable customers to take a more active role as market players and reach (and be reached by) almost everyone anywhere and anytime. These new media threaten long established business models and corporate strategies, but also provide ample opportunities for growth through new adaptive strategies. This paper introduces a new ‘‘pinball’’ framework of new media’s impact on relationships with customers and identifies key new media phenomena which companies should take into account when managing their relationships with customers in the new media universe. For each phenomenon, we identify challenges for researchers and managers which relate to (a) the understanding of consumer behavior, (b) the use of new media to successfully manage customer interactions, and (c) the effective measurement of customers’ activities and outcomes.

Journal ArticleDOI
29 Jul 2010-Nature
TL;DR: A role for the β-cell clock is demonstrated in coordinating insulin secretion with the sleep–wake cycle, and ablation of the pancreatic clock can trigger the onset of diabetes mellitus.
Abstract: During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis — a rhythmic process that is disturbed in people with diabetes. Experiments in mice now show that the pancreatic islets contain their own biological clock, which orchestrates insulin secretion during the sleep–wake cycle. The transcription factors CLOCK and BMAL1 are vital for this process, and mice with defective copies of the genes Clock and Bmal1 develop hypoinsulinaemia and diabetes. By demonstrating that a local tissue clock integrates circadian and metabolic signals in pancreatic β-cells, this work suggests that circadian analyses are crucial for deeper understanding of metabolic phenotypes, as well as for the treatment of metabolic diseases such as type 2 diabetes. Circadian rhythms control many physiological functions. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis — a rhythmic process that is disturbed in people with diabetes. These authors show that pancreatic islets contain their own clock: they have self-sustained circadian oscillations of CLOCK and BMAL1 genes and proteins, which are vital for the regulation of circadian rhythms. Without this clock, a cascade of cellular failure and pathology initiates the onset of diabetes mellitus. The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night1,2,3. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes4, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock5,6 and Bmal17 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus–secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep–wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.

Journal ArticleDOI
TL;DR: This paper provides an estimator of the covariance matrix of meta-regression coefficients that is applicable when there are clusters of internally correlated estimates and demonstrates that the meta- Regression coefficients are consistent and asymptotically normally distributed and that the robust variance estimator is valid even when the covariates are random.
Abstract: Conventional meta-analytic techniques rely on the assumption that effect size estimates from different studies are independent and have sampling distributions with known conditional variances. The independence assumption is violated when studies produce several estimates based on the same individuals or there are clusters of studies that are not independent (such as those carried out by the same investigator or laboratory). This paper provides an estimator of the covariance matrix of meta-regression coefficients that are applicable when there are clusters of internally correlated estimates. It makes no assumptions about the specific form of the sampling distributions of the effect sizes, nor does it require knowledge of the covariance structure of the dependent estimates. Moreover, this paper demonstrates that the meta-regression coefficients are consistent and asymptotically normally distributed and that the robust variance estimator is valid even when the covariates are random. The theory is asymptotic in the number of studies, but simulations suggest that the theory may yield accurate results with as few as 20-40 studies. Copyright © 2010 John Wiley & Sons, Ltd.