scispace - formally typeset
Search or ask a question
Institution

Sichuan University

EducationChengdu, China
About: Sichuan University is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 107623 authors who have published 102844 publications receiving 1612131 citations. The organization is also known as: Sìchuān Dàxué.
Topics: Catalysis, Population, Medicine, Cancer, Chemistry


Papers
More filters
Journal ArticleDOI
Wei Jie1, Li Yubao1
TL;DR: A new kind of tissue engineering scaffold materials of needle-like nano-hydroxyapatite (n-HA) and polyamide (PA) biocomposite is prepared by co-solution, co-precipitation method and water treatment under normal atmospheric pressure as discussed by the authors.

210 citations

Journal ArticleDOI
TL;DR: Cur micelles were more effective in inhibiting tumor growth and prolonged survival in both subcutaneous and pulmonary metastatic LL/2 tumor models, and suggested that Cur micells may have promising applications in pulmonary carcinoma therapy.

210 citations

Journal ArticleDOI
Zhu-Bao Shao1, Cong Deng1, Yi Tan1, Li Yu1, Ming-Jun Chen1, Li Chen1, Yu-Zhong Wang1 
TL;DR: In this article, an ethanolamine-modified ammonium polyphosphate (ETA-APP) was applied to polypropylene (PP) to improve its flame-retardant efficiency.
Abstract: Ammonium polyphosphate (APP) is not an efficient flame retardant for polypropylene (PP) when it is used alone. In order to improve its flame-retardant efficiency, ethanolamine (ETA) was used to chemically modify APP via ion exchange reaction. The resulting ethanolamine-modified ammonium polyphosphate (ETA-APP) was alone applied to flame retard PP, the limiting oxygen index (LOI) value could reach 35.0% and the vertical burning test (UL-94) could pass the V-0 rating at a loading of 35 wt% ETA-APP. Moreover, cone calorimeter (CC) test results showed that the heat release rate (HRR), the total heat release (THR), the mass loss rate (MLR), the smoke production rate (SPR) and the total smoke production (TSP) of PP/35 wt% ETA-APP composite largely decreased, for example, by 77.2%, 88.5% and 77.9% for THR, TSP and the fire growth rate (FGR), respectively, compared with PP containing an equal amount of APP. In addition, the residual char of PP/35 wt% ETA-APP increased by 195.6% compared with that of PP/35 wt% APP. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to analyze the flame retardant mechanism of ETA-APP. It was confirmed that the formation of P–O–C and P–N–C structures, resulting from the incorporation of ETA could greatly improve the stability of intumescent char layer and consequently lead to the much better flame retardancy of ETA-APP than that of unmodified APP. Experimental results demonstrated that the prepared ETA-APP acted not only as the acid source and blowing source as efficient as unmodified APP, but also as an excellent charring agent beyond the unmodified APP.

210 citations

Journal ArticleDOI
Zhang Li1, Li Yubao1, Yang Aiping1, Peng Xuelin1, Wang Xuejiang1, Zhang Xiang1 
TL;DR: The specimens made of 30/70 chitosan/n-HA composite exhibit high biodegradability and bioactivity when being immersed in SBF solutions and is appropriate to being used as scaffold materials for bone tissue engineering.
Abstract: Chitosan/nano-hydroxyapatite composites with different weight ratios were prepared through a co-precipitation method using Ca(OH)2, H3PO4 and chitosan as starting materials. The properties of these composites were characterized by means of TEM, IR, XRD, burn-out test and universal matertial test machine. Additionally, in vitro tests were also conducted to investigate the biodegradability and bioactivity of the composite. The results showed that the HA synthesized here was poorly crystalline carbonated nanometer crystals and dispersed uniformly in chitosan phase and there is no phase-separation between the two phases. Because of the interactions between chitosan and n-HA, the mechanical properties of these composites were improved, and the maximum value of the compressive strength was measured about 120 MPa corresponding to the chitosan/n-HA composite with a weight ratio of 30/70. The specimens made of 30/70 chitosan/n-HA composite exhibit high biodegradability and bioactivity when being immersed in SBF solutions. The composite is appropriate to being used as scaffold materials for bone tissue engineering. © Springer Science + Business Media, Inc.

210 citations

Journal ArticleDOI
TL;DR: High thermoconductive and thermostable polymer nanocomposite films prepared by engineering 1D aramid nanofiber with worm-like microscopic morphologies into rigid rod-like structures with 2D boron nitride nanosheets (BNNS) enable effective thermal management for microelectrodes operating at temperatures beyond 200 °C.
Abstract: Polymer-based thermal management materials have many irreplaceable advantages not found in metals or ceramics, such as easy processing, low density, and excellent flexibility. However, their limited thermal conductivity and unsatisfactory resistance to elevated temperatures ( 100 MPa, 450 °C) enable effective thermal management for microelectrodes operating at temperatures beyond 200 °C.

210 citations


Authors

Showing all 108474 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Robin M. Murray1711539116362
Xiang Zhang1541733117576
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Yi Yang143245692268
Xinliang Feng13472173033
Chuan He13058466438
Lei Zhang130231286950
Jian Zhou128300791402
Shaobin Wang12687252463
Yi Xie12674562970
Pak C. Sham124866100601
Wei Chen122194689460
Bo Wang119290584863
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023339
20221,713
202113,849
202011,702
20199,714
20187,906