scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.
Topics: Population, Virus, Cancer, Influenza A virus, Leukemia


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rβ2 and gp130 or homodimers of each chain, which may broaden the spectrum and specificity of IL- 35-mediated suppression.
Abstract: Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rβ2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.

373 citations

Journal ArticleDOI
TL;DR: The lymphatic system is composed of a vascular network of thin-walled capillaries that drain protein-rich lymph from the extracellular spaces within most organs, and lymphatic vessels are not normally present in avascular structures such as epidermis, hair, nails, cartilage, and cornea.
Abstract: The lymphatic system is composed of a vascular network of thin-walled capillaries that drain protein-rich lymph from the extracellular spaces within most organs. A continuous single-cell layer of overlapping endothelial cells lines the lymphatic capillaries, which lack a continuous basement membrane and are, therefore, highly permeable. Lymph returns to venous circulation via the larger lymphatic collecting vessels, which contain a muscular and adventitial layer, and the thoracic duct. The lymphatic system also includes lymphoid organs such as the lymph nodes, tonsils, Peyer’s patches, spleen, and thymus, all of which play an important role in the immune response. The lymphatic system develops in parallel with the blood vascular system through a process known as lymphangiogenesis, and lymphatic vessels are not normally present in avascular structures such as epidermis, hair, nails, cartilage, and cornea, nor in some vascularized organs such as brain and retina. Although studies of normal development and pathologic growth of the blood vascular system have thoroughly elucidated the molecular mechanisms that control these angiogenic processes (Gale and Yancopoulos 1999), studies of the lymphatic system have been hindered by the lack of specific lymphatic markers and growth factors. Consequently, our understanding of the development and function of the lymphatic system and its role in disease is still emerging. Recently, the discovery of molecules that specifically control lymphatic development and lymphatic vessel growth (lymphangiogenesis) and the identification of new lymphatic endothelium-specific markers (Breiteneder-Geleff et al. 1999; Wigle and Oliver 1999; Jackson et al. 2001; Sleeman et al. 2001; Veikkola et al. 2001) have facilitated key scientific advances and provided new insights into the molecular mechanisms that control lymphatic development and function. These findings include the identification of specific genetic defects in certain hereditary diseases that are associated with lymphatic hypoplasia and dysfunction (i.e., lymphedemas; Milroy 1892; Meige 1898), and evidence that malignant tumors can directly activate lymphangiogenesis and lymphatic metastasis (Karpanen et al. 2001; Mandriota et al. 2001; Skobe et al. 2001a; Stacker et al. 2001).

371 citations

Journal ArticleDOI
TL;DR: The isolation of three differentially spliced human IL-15Rα variants that are all capable of high affinity binding ofIL-15 are extended into the human system, suggesting a broader range of cellular targets for IL- 15.

371 citations

Journal ArticleDOI
TL;DR: It is reported that Prox1 is required for hepatocyte migration and loss of ProX1 leads to formation of a smaller liver with a reduced population of clustered hepatocytes surrounded by a laminin-rich basal membrane.
Abstract: Several genes are required during the early phases of liver specification, proliferation and differentiation1,2,3. Here we report that Prox1 is required for hepatocyte migration. Loss of Prox1 leads to formation of a smaller liver with a reduced population of clustered hepatocytes surrounded by a laminin-rich basal membrane.

371 citations

Journal ArticleDOI
02 Mar 2012-Cell
TL;DR: The studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.

371 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,278
20201,136
2019965
2018877