scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.
Topics: Population, Virus, Cancer, Influenza A virus, Leukemia


Papers
More filters
Journal ArticleDOI
30 Apr 2010-Science
TL;DR: The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frogs Xenopus laevis with more tractable genetics.
Abstract: The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.

679 citations

Journal ArticleDOI
TL;DR: Recent data that stem cells of glioblastoma, a highly malignant brain tumour, seem to be dependent on cues from aberrant vascular niches that mimic the normal neural stem cell niche have direct implications for cancer.
Abstract: Glioblastoma stem cells might be dependent on cues from aberrant vascular niches that mimic the normal neural stem cell niche. What are the implications of these findings for treatment of this disease? Parallel to the role that normal stem cells play in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Understanding normal development might therefore lead to better treatments of cancer. We review recent data that stem cells of glioblastoma, a highly malignant brain tumour, seem to be dependent on cues from aberrant vascular niches that mimic the normal neural stem cell niche. These data have direct implications for cancer, highlighting the similarity between normal and malignant stem cells and identifying the tumour microenvironment as a target for new therapies.

677 citations

Journal ArticleDOI
TL;DR: An improved water-suppression technique called WET (water suppression enhanced through T1 effects), developed from a Bloch equation analysis of the longitudinal magnetization over the T1 and B1 ranges of interest, achieves T1- and B 1-insensitive suppression with four RF pulses, each having a numerically optimized flip angle.

676 citations

Journal ArticleDOI
01 Aug 2011-Glia
TL;DR: The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities.
Abstract: High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumor cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells maybe the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells such as vascular cells,microglia, peripheral immune cells, and neural precursor cells also play a vital role in controlling the course of pathology.In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact as well as signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells,which can contribute up to 30% of a brain tumor mass,play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural precursor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete.

671 citations

Journal ArticleDOI
TL;DR: The data indicate that both the ERSE and the PERK-ATF4 pathways converge on the CHOP promoter during ER stress and provide insights into the similarities and differences between CHOP and ER chaperone expression during normal and stress conditions.

670 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,278
20201,136
2019965
2018877