scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: The data show that the deciduous species beech and ash were more susceptible to O(3) with respect to RSR and biomass than the coniferous species Norway spruce and Scots pine.

59 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the CLUmondo modelling framework that couples cellular automata and multivariate logistic regression to simulate urban growth in Madrid, Barcelona, Valencia, and Zaragoza Spanish Functional Urban Areas from 2012 to 2030 in four scenarios.

59 citations

Journal ArticleDOI
TL;DR: The results suggest that complex interactions between CO2 , species and soil quality need to be accounted for when attempting to predict forest development in a future CO2 -rich world.
Abstract: Responses of leaf gas exchange and above-ground growth of beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) to atmospheric CO2 enrichment (374 μl l−1 vs. 590 μl l−1) and increased wet deposition of N (5 vs. 50 kg N ha−1 a−1) in combination with two natural forest soil types (‘acidic’ and ‘calcareous’) were studied in large open-top chambers. Eight juvenile beech and spruce trees from different provenances, together with a ground cover composed of five understorey species, were established in each of 32 model ecosystems. Both beech and spruce showed sustained enhancement of photosynthesis in response to atmospheric CO2 enrichment during the first 2 yr of treatment. Nevertheless, switching measurement CO2 concentrations revealed partial downward adjustment of photosynthesis in trees grown in elevated CO2, beech generally showing more pronounced downward adjustment than spruce. The responsiveness of photosynthesis to CO2 enrichment did not vary significantly among trees from different provenances. Stomatal conductance was reduced under elevated CO2 in both tree species. In spruce, the radial growth of the main stem and the annual production of wood (shoot-wood dry mass of current-year lateral shoots), needle dry mass, and assimilation area per tree were stimulated both by CO2 enrichment and increased N deposition, but were not significantly affected by soil type by year 2. In contrast, in beech, the radial growth of the stem and the total leaf number, foliage dry mass, and assimilation area per tree were all not significantly affected by elevated CO2 and increased N deposition when responses of the two soil types were pooled, but were greater on calcareous than on acidic soil by year 2. However, CO2 interacted with soil type in beech: irrespective of the N deposition rate, saplings showed growth stimulation on the calcareous soil but responded negatively to CO2 enrichment on the acidic soil (where growth was slower). Our results suggest that complex interactions between CO2, species and soil quality need to be accounted for when attempting to predict forest development in a future CO2-rich world.

59 citations

Journal ArticleDOI
TL;DR: Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras.
Abstract: Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems–Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25 μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras.

59 citations

Journal ArticleDOI
TL;DR: In this paper, an extension of MEMLS, called MEMLS3&a, is proposed for active microwave remote sensing of snow, where the reflectivity is decomposed into diffuse and specular components.
Abstract: . The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankyla, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html .

59 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281