scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: It was shown that taxonomic metrics were used most often as proxies for biodiversity, with very little attention given to functional biodiversity metrics, and the role of particular species, including non-natives, and specific functional traits are understudied.
Abstract: Positive relationships between biodiversity and urban ecosystem services (UES) are widely implied within both the scientific and policy literatures, along with the tacit suggestion that enhancing urban green infrastructure will automatically improve both biodiversity and UES. However, it is unclear how much published empirical evidence exists to support these assumptions. We conducted a review of studies published between 1990 and May 2017 that examined urban biodiversity ecosystem service (BES) relationships. In total, we reviewed 317 publications and found biodiversity and UES metrics mentioned 944 times. Only 228 (24%) of the 944 mentions were empirically tested. Among these, 119 (52%) demonstrated a positive BES relationship. Our review showed that taxonomic metrics were used most often as proxies for biodiversity, with very little attention given to functional biodiversity metrics. Similarly, the role of particular species, including non-natives, and specific functional traits are understudied. Finally, we found a paucity of empirical evidence underpinning urban BES relationships. As urban planners increasingly incorporate UES delivery consideration to their decision-making, researchers need to address these substantial knowledge gaps to allow potential trade-offs and synergies between biodiversity conservation and the promotion of UES to be adequately accounted for.

114 citations

Journal ArticleDOI
TL;DR: Analysis of LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees’ adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies reveals region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
Abstract: Late-spring frosts (LSFs) affect the performance of plants and animals across the world’s temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees’ adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species’ innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.

113 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used photogrammetric image correlation techniques based on the multispectral nadir and backward-looking sensor data to generate digital surface models of winter and summer terrains in the neighborhood of Davos, Switzerland.
Abstract: . Information on snow depth and its spatial distribution is crucial for numerous applications in snow and avalanche research as well as in hydrology and ecology. Today, snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been successfully performed using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 optoelectronic scanner, acquiring stereo imagery with 0.25 m spatial resolution to derive digital surface models (DSMs) of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward-looking sensor data. In order to assess the accuracy of the photogrammetric products, we compare these products with the following independent data sets acquired simultaneously: (a) manually measured snow depth plots; (b) differential Global Navigation Satellite System (dGNSS) points; (c) terrestrial laser scanning (TLS); and (d) ground-penetrating radar (GPR) data sets. We demonstrate that the method presented can be used to map snow depth at 2 m resolution with a vertical depth accuracy of ±30 cm (root mean square error) in the complex topography of the Alps. The snow depth maps presented have an average accuracy that is better than 15 % compared to the average snow depth of 2.2 m over the entire test site.

113 citations

Journal ArticleDOI
TL;DR: The efficacy of saproxylic beetles as indicator species for European beech forests is determined and the conspicuous Lucanidae is identified as the family with the highest percentage of indicator species and recommended as a priority indicator group for monitoring.

113 citations

Journal ArticleDOI
TL;DR: Main advantages of the tiered approach are that it can be adapted to other ES, it supports the efforts toward a standardized ES assessment, and it provides information about relevant variables to be considered in long term monitoring at different scales.
Abstract: Ecosystem services (ES) mapping make the benefits of nature spatially explicit The different methods used for ES mapping limit the comparability of outcomes and call for a more consistent but flexible approach We present a four step tiered approach for ES mapping supporting scholars to select the adequate combination of variables: First, the user, researcher or policy maker defines the goal of the ES assessment Second, a meta-analysis of relevant ES mapping studies is conducted to identify key variables for mapping the selected ES Third, the identified variables are attributed to the different levels of the multitier framework according to the level at which they best answer the policy or research question Finally, appropriate methods for mapping the ES are selected based on the reviewed studies We illustrate the approach for recreational services at three different tiers Main advantages of the tiered approach are that (i) it can be adapted to other ES, (ii) it supports the efforts toward a standardized ES assessment, (iii) it provides information about relevant variables to be considered in long term monitoring at different scales, (iv) it supports sustainable resource management as it ensures the inclusion of information relevant to decision makers at different levels

113 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281