scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: Oak species and the conifers supported the large seed and the accessory costs hypotheses, and beech and spruce supported the economy of scale, predator satiation and resource allocation hypotheses.

62 citations

Journal ArticleDOI
TL;DR: The NSC constancy across treatments provides evidence that carbohydrate storage may stay constant when climate changes are sufficiently slow to allow acclimation, and it is speculated that total leaf area, rather than leaf gas exchange per unit Leaf area, drives the variation in whole-tree carbohydrate dynamics in this system.
Abstract: Nonstructural carbohydrates (NSCs) are important for the growth and survival of trees. Drought may lead to a decrease in tree growth and to NSC depletion, whereas increased soil moisture in otherwise dry ecosystems may increase growth and NSC concentrations. A long-term (13 yr) irrigation experiment was conducted in a Pinus sylvestris-dominated forest located at the dry margin of the species in southern Switzerland. We measured the relative leaf area, growth, NSCs, needle δ13 C, [N] and [P] in trees on control and irrigated plots. Irrigation resulted in higher growth rates and carbon isotope discrimination, but did not alter NSC levels. Growth and NSC decreased with decreasing leaf area in both treatments, but NSC did not correlate with leaf-level gas exchange indices, such as foliar δ13 C, [N] or [P]. A legacy effect was shown, as trees with initially low leaf area had limited ability to respond to prolonged irrigation. The NSC constancy across treatments provides evidence that carbohydrate storage may stay constant when climate changes are sufficiently slow to allow acclimation. Moreover, we speculate that total leaf area, rather than leaf gas exchange per unit leaf area, drives the variation in whole-tree carbohydrate dynamics in this system.

62 citations

Journal ArticleDOI
TL;DR: Wood material from the sapwood of the studied tree species is as useful as cellulose for studying environmental effects on tree-ringδ(18)O and δ(13)C values at a short-term scale as considered in most ecophysiological studies.
Abstract: RATIONALE We investigated the applicability of tree-ring whole-wood material for δ(18)O and δ(13)C analysis in comparison with the more time- and resource-intensive use of cellulose, by considering possible variability between (i) five different tree species (Fagus sylvatica, Quercus robur, Picea abies, Abies alba, Pseudotsuga menziesii), (ii) two sites that differ in soil moisture, and (iii) climate conditions within a 10-year period. METHODS Stem cores of 30 individual trees (n = 3 trees per each species and site) were sampled from two sites in south Germany (Bavaria), and tree rings within sapwood of the years 2001-2010 were separated. The δ(18)O and δ(13)C values from homogenized tree-ring whole wood and from extracted cellulose were measured by mass spectrometry. Species-specific offsets in isotope values were analyzed and the responses in isotopic signature to climate variability including a single drought event were compared between whole-wood and cellulose. RESULTS A constant offset in δ(18)O values of ca 5‰ between wood and cellulose was observed for most species independent of site conditions, with a significant difference between beech and Douglas-fir, while inter-annual variability was only observed in oak. The offset in δ(13)C values ranged between 1.45 and 1.84‰ across species, sites and years. Both materials generally showed similar strength in responses to temperature, precipitation and soil water availability, particularly for conifers. Resistance to severe drought stress--partly more strongly reflected in the δ(13)C values of cellulose--was lower for conifers than for the deciduous species. CONCLUSIONS Wood material from the sapwood of the studied tree species is as useful as cellulose for studying environmental effects on tree-ring δ(18)O and δ(13)C values at a short-term scale as considered in most ecophysiological studies. The more variable response of oak may require further investigations.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a dataset of regularly distributed local-scale records of vascular plant, bryophyte and snail (Gastropoda) species to model richness patterns in forests across an environmentally heterogeneous region in Central Europe (Switzerland).

61 citations

Journal ArticleDOI
TL;DR: In this paper, two tree-ring chronologies were presented and discussed: a 758-year-long one of Pinus heldreichii Christ and a 340-yearlong Pinus peuce Griseb from treeline locations in the Pirin Mountains in Bulgaria.
Abstract: Numerous proxy climate reconstructions have been developed for Europe, but there are still regions with limited data of this kind. One region is the Balkan Peninsula, which is characterized by complex interactions between mountains and climate. We present and discuss two tree-ring chronologies—a 758-year-long one of Pinus heldreichii Christ and 340-year-long one of Pinus peuce Griseb. from treeline locations in the Pirin Mountains in Bulgaria. Climate–growth relationships were computed with bootstrap correlation functions and their consistency over time assessed by calculating the correlations over shortened periods. In addition, we reviewed and analyzed climate situations in years with unusually narrow or wide tree rings. Both species were negatively influenced by previous summer drought conditions and cold winters. Early summer temperatures were positively correlated with P. peuce radial growth, whereas P. heldreichii displayed dependence on summer precipitation. In the second half of the twentieth century, the P. heldreichii trees displayed higher sensitivity to summer drought, which was probably a result of increased summer temperatures and decreased winter precipitation. Our findings contribute to more reliable proxy climate records for the region.

61 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281