scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
01 Sep 1995-Planta
TL;DR: In this article, structural alterations of the photobiont and mycobionts of lichens have been related to CO2-gas exchange during experiments involving water vapour uptake and desiccation of liquid-water-saturated thalli.
Abstract: Structural alterations of the photobiont and mycobiont cells of lichens have been related to CO2-gas exchange during experiments involving water vapour uptake and desiccation of liquid-water-saturated thalli. Increasing water vapour uptake of air dry lichens led to a gradual unfolding of the photobiont cells in Lobaria pulmonaria, Pseudevernia furfuracea, Ramalina maciformis and Teloschistes lacunosus as studied by low-temperature scanning electron microscopy. The data indicated that globular, probably turgid, cells and also slightly infolded or even heavily collapsed cells contributed to positive net photosynthesis, which was reached after water vapour uptake by the four species studied. During desiccation of fully water-saturated thalli of L. pulmonaria, extrathalline water films gradually evaporated before maximum values of CO2-gas exchange were measured and before photobiont cells started to shrivel. In contrast, in P. furfuracea the CO2-gas exchange maximum was reached when a considerable percentage of photobiont cells had already collapsed and while other parts of the thalli were still covered with liquid water. Further desiccation led to cavitation of the cortical cells in both species, this occurring at water contents at which net photosynthesis was still positive.

84 citations

Journal ArticleDOI
TL;DR: It is found that specific leaf area—a commonly measured morphological trait inferring shifts between plant growth strategies—did not respond to up to four years of soil nutrient additions, and leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient.
Abstract: Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)-a commonly measured morphological trait inferring shifts between plant growth strategies-did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands.

84 citations

Journal ArticleDOI
TL;DR: This analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data and finds a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality.
Abstract: Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

83 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the mean annual differences between the seasonal glaciological and volumetric mass balances obtained by standard glaciological methods including an uncertainty assessment considering all related previous studies.
Abstract: Seasonal glaciological mass balances have been measured on Storglaciwithout interruption since 1945/46. In addition, aerial surveys have been carried out on a decadal basis since the beginning of the observation pro- gram. Early studies had used the resulting aerial photographs to produce topographic glacier maps with which the in-situ observations could be verified. However, these maps as well as the derived volume changes are subject to errors which resulted in major differences between the derived volumet- ric and the glaciological mass balance. As a consequence, the original photographs were re-processed using uniform photogrammetric methods, which resulted in new volumetric mass balances for 1959-69, 1969-80, 1980-90, and 1990- 99. We compared these new volumetric mass balances with mass balances obtained by standard glaciological methods including an uncertainty assessment considering all related previous studies. The absolute differences between volumet- ric and the glaciological mass balances are 0.8 m w.e. for the period of 1959-69 and 0.3 m w.e. or less for the other survey periods. These deviations are slightly reduced when consid- ering corrections for systematic uncertainties due to differ- ences in survey dates, reference areas, and internal ablation, whereas internal accumulation systematically increases the mismatch. However, the mean annual differences between glaciological and volumetric mass balance are less than the uncertainty of the in-situ stake reading and stochastic error bars of both data series overlap. Hence, no adjustment of the glaciological data series to the volumetric one is required.

83 citations

Journal ArticleDOI
TL;DR: The authors applied statistical postprocessing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near surface wind speed from the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF) to evaluate the evolution of the difference in skill between the raw ensemble and the postprocessed forecasts.
Abstract: This study applies statistical postprocessing to ensemble forecasts of near-surface temperature, 24 h precipitation totals, and near-surface wind speed from the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the postprocessed forecasts. Reliability and sharpness, and hence skill, of the former is expected to improve over time. Thus, the gain by postprocessing is expected to decrease. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations, we generate postprocessed forecasts by ensemble model output statistics (EMOS) for each station and variable. Given the higher average skill of the postprocessed forecasts, we analyze the evolution of the difference in skill between raw ensemble and EMOS. This skill gap remains almost constant over time indicating that postprocessing will keep adding skill in the foreseeable future.

83 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281