scispace - formally typeset
Search or ask a question

Showing papers by "The Cyprus Institute published in 2016"


Journal ArticleDOI
TL;DR: The ensemble results of CMIP5 climate models that applied the RCP4.5 and RCP8.5 scenarios have been used to investigate climate change and temperature extremes in the Middle East and North Africa (MENA).
Abstract: The ensemble results of CMIP5 climate models that applied the RCP4.5 and RCP8.5 scenarios have been used to investigate climate change and temperature extremes in the Middle East and North Africa (MENA). Uncertainty evaluation of climate projections indicates good model agreement for temperature but much less for precipitation. Results imply that climate warming in the MENA is strongest in summer while elsewhere it is typically stronger in winter. The summertime warming extends the thermal low at the surface from South Asia across the Middle East over North Africa, as the hot desert climate intensifies and becomes more extreme. Observations and model calculations of the recent past consistently show increasing heat extremes, which are projected to accelerate in future. The number of warm days and nights may increase sharply. On average in the MENA, the maximum temperature during the hottest days in the recent past was about 43 °C, which could increase to about 46 °C by the middle of the century and reach almost 50 °C by the end of the century, the latter according to the RCP8.5 (business-as-usual) scenario. This will have important consequences for human health and society.

299 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify four types of enhancement mechanisms in the recent literature: (i) light scattering, (ii) light concentration, (iii) hot electron injection (HEI), and (iv) plasmon induced resonance energy transfer (PIRET).
Abstract: Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar to fuel energy conversion efficiencies are obtained with earth abundant materials. This review article discusses recent developments and discoveries in the mechanisms by which the localized surface plasmon resonance (LSPR) in metallic nanoparticles can increase or complement a neighbouring semiconductor in light absorption for catalytic water splitting applications. These mechanisms can mitigate the intrinsic optical limitations of semiconductors (e.g., metal oxides) for efficient solar water splitting. We identify four types of enhancement mechanisms in the recent literature: (i) light scattering, (ii) light concentration, (iii) hot electron injection (HEI), and (iv) plasmon-induced resonance energy transfer (PIRET). (i) Light scattering and (ii) light concentration are light trapping mechanisms that can increase the absorption of light with energies above the semiconductor optical band-edge. These two mechanisms are ideal to enhance the absorption of promising semiconductors with narrow bandgap energies that suffer from limited absorption coefficients and bulk charge recombination. On the other hand, (iii) HEI and the recently discovered (iv) PIRET are mechanisms that can enhance the absorption also below the semiconductor optical band-edge. Therefore, HEI and PIRET have the potential to extend the light utilization to visible and near-infrared wavelengths of semiconductors with excellent electrochemical properties, but with large bandgap energies. New techniques and theories that have been developed to elucidate the above mentioned plasmonic mechanisms are presented and discussed for their application in metal oxide photoelectrodes. Finally, other plasmonic and non-plasmonic effects that do not increase the device absorption, but affect the electrochemical properties of the semiconductor (e.g., charge carrier transport) are also discussed, since a complete understanding of these phenomena is fundamental for the design of an efficient plasmonic NP-semiconductor water splitting device.

162 citations


Journal ArticleDOI
TL;DR: In this paper, the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources was investigated using a multivariate mathematical receptor modeling, and the reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature).
Abstract: . Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2–C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction – mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of this work is the significant contribution from wood-burning, especially in winter, where it could represent up to ∼ 50 % of the total mass of VOCs. Biogenic emissions also surprisingly contributed up to ∼ 30 % in summer (due to the dominating weight of OVOCs in this source). Finally, the mixed natural gas and background source exhibited a high contribution in spring (35 %, when continental air influences were observed) and in autumn (23 %, for home heating consumption).

156 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection to study trends over the Middle East between 2000 and 2015.
Abstract: . We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Angstrom exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

152 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the regulatory and policy framework of the feed-in-tariff (FiT) scheme, specifically its effect on both the electricity pricing as well as the local and European renewable energy sources (RES) market, and accordingly the definition of its feasibility as a scheme for the further development and promotion of renewable energy technologies.

146 citations


Journal ArticleDOI
TL;DR: This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rate coefficients.
Abstract: This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.

120 citations


Journal ArticleDOI
TL;DR: A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling as discussed by the authors.
Abstract: The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign with main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 to 0.6 (at 440 nm) over the western and central Mediterranean basins. Associated aerosol extinction values measured on-board the ATR-42 within the dust plume show local maxima reaching up to 150 Mm−1. Non negligible aerosol extinction (about 50 Mm−1) was also been observed within the Marine Boundary Layer (MBL). By combining ATR-42 extinction, absorption and scattering measurements, a complete optical closure has been made revealing excellent agreement with estimated optical properties. Associated calculations of the dust single scattering albedo (SSA) have been conducted, which show a moderate variability (from 0.90 to 1.00 at 530 nm). In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea-salt and pollution located within the MBL, and mineral dust and/or aged north American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations show particle size distributions characterized by large aerosols (> 10 μm in diameter) within dust plumes. In terms of shortwave (SW) direct forcing, in-situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with measurements/observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa.

115 citations


Journal ArticleDOI
TL;DR: Improved techniques are used to evaluate the disconnected quark loops to sufficient accuracy to determine the strange and charm nucleon σ terms in addition to the light quark content σ_{πN}.
Abstract: We evaluate the light, strange, and charm scalar content of the nucleon using one lattice QCD ensemble generated with two degenerate light quarks with mass fixed to their physical value. We use improved techniques to evaluate the disconnected quark loops to sufficient accuracy to determine the strange and charm nucleon σ terms in addition to the light quark content σ_{πN}. We find σ_{πN}=37.2(2.6)(4.7/2.9) MeV, σ_{s}=41.1(8.2)(7.8/5.8) MeV, and σ_{c}=79(21)(12/8) MeV, where the first error is statistical and the second is the systematic error due to the determination of the lattice spacing, the assessment of finite volume, and residual excited state effects.

114 citations


Journal ArticleDOI
TL;DR: According to observed twentieth century temperature trends and twenty-first century climate model projections, the region that encompasses the eastern Mediterranean and the Middle East (EMME) is identified as a climate change hot spot as discussed by the authors.
Abstract: According to observed twentieth century temperature trends and twenty-first century climate model projections, the region that encompasses the eastern Mediterranean and the Middle East (EMME) is identified as a climate change hot spot. We extend previous studies by a comprehensive climatology of heat waves in the EMME based on regional climate model simulations for the recent past and the end of the twenty-first century. A percentile-based definition of heat waves is used to account for local climatic conditions. Spatial patterns of several heat wave properties are assessed and associated with atmospheric circulation regimes over specific locations. To cover a range of possible future climates, we use three SRES emission scenarios. According to our results, all indices that characterize heat wave severity will strongly increase compared with the control period of 1961–1990. The northern part of the EMME could be exposed to increased heat wave amplitudes by 6–10 °C, and the southern part may experience 2–3 months more combined hot days and tropical nights. Heat wave peak temperatures will be higher due to the overall mean warming as well as stronger summer anticyclonic conditions. The projected changes will affect human health and the environment in multiple ways and call for impact studies to support the development of adaptation strategies.

111 citations


Journal ArticleDOI
TL;DR: The results reflect the need to adopt stricter limits for annual mean PM2.5 levels globally, like the US standard of 12 μg/m3 or an even lower limit to substantially reduce premature mortality in most of the world.
Abstract: Air pollution by fine aerosol particles is among the leading causes of poor health and premature mortality worldwide. The growing awareness of this issue has led several countries to implement air pollution legislation. However, populations in large parts of the world are still exposed to high levels of ambient particulate pollution. The main aim of this work is to evaluate the potential impact of implementing current air quality standards for fine particulate matter (PM2.5) in the European Union (EU), United States (US) and other countries where PM2.5 levels are high. We use a high-resolution global atmospheric chemistry model combined with epidemiological concentration response functions to investigate premature mortality attributable to PM2.5 in adults ≥30 years and children <5 years. We perform sensitivity studies to estimate the reductions in mortality that could be achieved if the PM2.5 air quality standards of the EU and US and other national standards would be implemented worldwide. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand per year. For the 28 EU member states we estimate 173 thousand and for the United States 52 thousand premature deaths in 2010. Based on sensitivity analysis, applying worldwide the EU annual mean standard of 25 μg/m3 for PM2.5 could reduce global premature mortality due to PM2.5 exposure by 17 %; while within the EU the effect is negligible. With the 2012 revised US standard of 12 μg/m3 premature mortality by PM2.5 could drop by 46 % worldwide; 4 % in the US and 20 % in the EU, 69 % in China, 49 % in India and 36 % in Pakistan. These estimates take into consideration that about 22 % of the global PM2.5 related mortality cannot be avoided due to the contribution of natural PM2.5 sources, mainly airborne desert dust and PM2.5 from wild fires. Our results reflect the need to adopt stricter limits for annual mean PM2.5 levels globally, like the US standard of 12 μg/m3 or an even lower limit to substantially reduce premature mortality in most of the world.

99 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed extensive field measurements for quantification of the emission factors from different types of road in the city of Paris, and investigated the causes of their variability and the contributions to the ambient air PM10 observed across one year at one traffic monitoring site in the ring road of Paris.

Journal ArticleDOI
TL;DR: In this article, the authors make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models.
Abstract: . Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (137Cs) and xenon-133 (133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available aerosol surface area. 137Cs size distribution measurements taken close to the power plant suggested that accumulation-mode (AM) sulfate aerosols were the main carriers of cesium. Hence, 137Cs can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas 133Xe behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of 137Cs that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and 133Xe emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled 137Cs and 133Xe concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime τe, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days (95 % confidence interval 13.1–15.7 days). The equivalent modelled τe lifetimes have a large spread, varying between 4.8 and 26.7 days with a model median of 9.4 ± 2.3 days, indicating too fast a removal in most models. Because sufficient measurement data were only available from about 2 weeks after the release, the estimated lifetimes apply to aerosols that have undergone long-range transport, i.e. not for freshly emitted aerosol. However, modelled instantaneous lifetimes show that the initial removal in the first 2 weeks was quicker (lifetimes between 1 and 5 days) due to the emissions occurring at low altitudes and co-location of the fresh plume with strong precipitation. Deviations between measured and modelled aerosol lifetimes are largest for the northernmost stations and at later time periods, suggesting that models do not transport enough of the aerosol towards the Arctic. The models underestimate passive tracer (133Xe) concentrations in the Arctic as well but to a smaller extent than for the aerosol (137Cs) tracer. This indicates that in addition to too fast an aerosol removal in the models, errors in simulated atmospheric transport towards the Arctic in most models also contribute to the underestimation of the Arctic aerosol concentrations.

Journal ArticleDOI
TL;DR: In this paper, the composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns, one conducted in 2013 and the other in 2012.
Abstract: . The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns, one conducted in 2013 and the other in 2012. A major goal of this study is to quantify the sources of organic aerosol (OA) and especially residential wood burning, which has dramatically increased due to the Greek financial crisis. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at both sites. PM with diameter less than 1 µm (PM1) consisted mainly of organics (60–75 %), black carbon (5–20 %), and inorganic salts (around 20 %) in both Patras and Athens. In Patras, during evening hours, PM1 concentrations were as high as 100 µg m−3, of which 85 % was OA. In Athens, the maximum hourly value observed during nighttime was 140 µg m−3, of which 120 µg m−3 was OA. Forty to 60 % of the average OA was due to biomass burning for both cities, while the remaining mass originated from traffic (12–17 %), cooking (12–16 %), and long-range transport (18–24 %). The contribution of residential wood burning was even higher (80–90 %) during the nighttime peak concentration periods, and less than 10 % during daytime. Cooking OA contributed up to 75 % during mealtime hours in Patras, while traffic-related OA was responsible for 60–70 % of the OA during the morning rush hour.

Journal ArticleDOI
TL;DR: The spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra and Aqua satellite instruments are characterized.
Abstract: This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an adapted framework for soil-related ecosystem services that is suited for practical application in the prevention and remediation of soil degradation across Europe, and adapted existing frameworks by integrating components from soil science while attempting to introduce a consistent terminology that is understandable to a variety of stakeholders.

Journal ArticleDOI
TL;DR: Experts of the European Network for TTR-FAP (ATTReuNET) concluded that genetic counselling for diagnosed individuals and at-risk family members is mostly beneficial and should be carried out with care by trained professionals.
Abstract: Purpose of review These recommendations highlight recent experience in genetic counselling for the severe autosomal-dominant, late-onset transthyretin familial amyloid polyneuropathy (TTR-FAP) dise ...

Journal ArticleDOI
TL;DR: In this paper, the concentration, cloud condensation nuclei activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation were investigated.
Abstract: . This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ∼ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10 % of the total aerosol hygroscopicity is related to the two biomass-burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. Observation-derived calculations of the cloud droplet concentrations that develop for typical boundary layer cloud conditions suggest that biomass burning increases droplet number, on average by 8.5 %. The strongly sublinear response of clouds to biomass-burning (BB) influences is a result of strong competition of CCN for water vapor, which results in very low maximum supersaturation (0.08 % on average). Attributing droplet number variations to the total aerosol number and the chemical composition variations shows that the importance of chemical composition increases with distance, contributing up to 25 % of the total droplet variability. Therefore, although BB may strongly elevate CCN numbers, the impact on droplet number is limited by water vapor availability and depends on the aerosol particle concentration levels associated with the background.

Journal ArticleDOI
TL;DR: In this article, an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs).
Abstract: . During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from −20 to −30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L−1 were measured at −30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.

Journal ArticleDOI
TL;DR: Fine-mode optical depth is found to decrease over almost all areas of the study region during the 12-year period, marking the decreasing contribution of anthropogenic particulate matter emissions over the study area.

Journal ArticleDOI
TL;DR: In this paper, the authors measured HONO and numerous other atmospheric trace constituents on the Mediterranean island of Cyprus during the CYPHEX (CYprus PHotochemical EXperiment) campaign in summer 2014.
Abstract: . Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX (CYprus PHotochemical EXperiment) campaign in summer 2014. Average volume mixing ratios of HONO were 35 pptv (±25 pptv) with a HONO ∕ NOx ratio of 0.33, which was considerably higher than reported for most other rural and urban regions. Diel profiles of HONO showed peak values in the late morning (60 ± 28 pptv around 09:00 local time) and persistently high mixing ratios during daytime (45 ± 18 pptv), indicating that the photolytic loss of HONO is compensated by a strong daytime source. Budget analyses revealed unidentified sources producing up to 3.4 × 106 molecules cm−3 s−1 of HONO and up to 2.0 × 107 molecules cm−3 s−1 NO. Under humid conditions (relative humidity > 70 %), the source strengths of HONO and NO exhibited a close linear correlation (R2 = 0.72), suggesting a common source that may be attributable to emissions from microbial communities on soil surfaces.

Journal ArticleDOI
TL;DR: In this paper, numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional
Abstract: . We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of the filter-loading effect on the optical properties of the particles present in the filter matrix, especially on the black carbon particle coating.
Abstract: Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Angstrom exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Angstrom exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter-loading parameter result from ageing and coating during long-range transport. Our results show that the filter-loading parameter can be used as a proxy for determination of the particle coating, thus allowing for differentiation between local/fresh and transported/aged particles.

Journal ArticleDOI
TL;DR: In this article, the importance of wind-blown mineral dust for cloud droplet formation is studied by considering the adsorption of water on the surface of insoluble particles, and particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations.
Abstract: . The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.


Journal ArticleDOI
TL;DR: In this paper, the authors studied the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model.
Abstract: . We study the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Tropopause fold events in EMAC simulations were identified with a 3-D labeling algorithm that detects folds at grid points where multiple crossings of the dynamical tropopause are computed. Subsequently the events featuring the largest horizontal and vertical extent were selected for further study. For the selection of these events we identified a significant contribution of the stratospheric ozone reservoir to the high concentrations of ozone in the middle and lower free troposphere over the EMME. A distinct increase of ozone is found over the EMME in the middle troposphere during summer as a result of the fold activity, shifting towards the southeast and decreasing altitude. We find that the interannual variability of near-surface ozone over the eastern Mediterranean (EM) during summer is related to that of both tropopause folds and ozone in the free troposphere.

Journal ArticleDOI
TL;DR: The third intensive measurement period (IMP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content as discussed by the authors.
Abstract: The third intensive measurement period (IMP) organised by the European Monitoring and Evaluation Programme (EMEP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5–10 µg m−3) compared to winter (0.2–2 µg m−3), with the most elevated concentrations in the southern- and easternmost countries, accounting for 20–40 % of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42−) in the Mediterranean region, metallurgy (Cr, Ni, and Mn) in central and eastern Europe, high temperature processes (As, Pb, and SO42−) in eastern countries, and traffic (Cu) at sites affected by emissions from nearby cities.

Posted ContentDOI
TL;DR: In this paper, the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate, were assessed using the ECHAM5/MESSy Atmospheric Chemistry model (EMAC).
Abstract: . This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42−, NO3−, Cl−, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1–3 µg m−3), while coarse aerosol nitrate is highest close to deserts (1–4 µg m−3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

Journal ArticleDOI
TL;DR: In this paper, the authors used the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol composition and evolution in the atmosphere.
Abstract: . Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25–40 %) and SOA (60–75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80–85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the structural, institutional and political rigidities that affect the adoption of irrigation scheduling technologies in southern European countries and highlighted the corresponding opportunities, finding that inadequate monitoring infrastructure and a lack of political will to impose the new water prices are giving a mixed signal to farmers.
Abstract: Despite the plethora of irrigation scheduling decision support systems that have been developed over the past decades, there is little evidence of widespread adoption by farmers. This paper investigates the structural, institutional and political rigidities that affect the adoption of irrigation scheduling technologies in southern European countries and highlights the corresponding opportunities. The recent implementation of water pricing policies, as required under the European Water Framework Directive, could motivate farmers to invest in technologies for improving water management. A review of irrigation water prices in southern Europe found a large range of prices both within and between countries, from 0.054–0.645 €/m 3 (Greece) to 0.23–1.50 €/m 3 (France). However, inadequate monitoring infrastructure and a lack of political will to impose the new water prices are giving a mixed signal to farmers. An ageing and poorly trained farm population, small farm size and low level of farm investment also impede the uptake of irrigation technologies. Within this context, European-funded research needs to consider these constraints and pay closer attention to the conversion of knowledge and innovation into successful commercial products.

Journal ArticleDOI
TL;DR: In this paper, a study of a daily precipitation database for the island of Cyprus is performed for a period of 30 years, and a number of climatic indices for precipitation are calculated using the recently available CHIRPS dataset, on high spatial (0.05°) and temporal (daily) resolution.
Abstract: A study of a daily precipitation database for the island of Cyprus is performed for a period of 30 years. A number of climatic indices for precipitation are calculated using the recently available CHIRPS dataset, on high spatial (0.05°) and temporal (daily) resolution. The same parameters for the same time period (1981–2010) are then calculated using the dense network of rain gauges of the Cyprus Department of Meteorology. The results show a quite promising performance regarding indices related to daily precipitation thresholds, resulting in high correlation scores. In the case of indices referring to number of days, it seems that the results are ambiguous, with medium or no correlation, probably related to the criteria used for the identification of a wet (rainy) day on the CHIRPS dataset.