scispace - formally typeset
Search or ask a question
Institution

Tulane University

EducationNew Orleans, Louisiana, United States
About: Tulane University is a education organization based out in New Orleans, Louisiana, United States. It is known for research contribution in the topics: Population & Blood pressure. The organization has 24478 authors who have published 47205 publications receiving 1944993 citations. The organization is also known as: University of Louisiana.


Papers
More filters
Journal ArticleDOI
TL;DR: An age- and sex-specific calcium score provides the best predictive model for the occurrence of hard coronary events and adds incremental prognostic information to conventional risk factors for CAD.

266 citations

Journal ArticleDOI
01 Mar 2004-Blood
TL;DR: Results indicated that the cells selected by serum deprivation were a subpopulation of very early progenitor cells with enhanced expression of octomer-binding transcription factor 4 (OCT-4) and several other genes characteristically expressed in embryonic cells.

265 citations

Journal ArticleDOI
TL;DR: A higher intake of dietary fiber, particularly water-soluble fiber, reduces the risk of CHD.
Abstract: Background Prospective studies suggest that dietary fiber intake, especially water-soluble fiber, may be inversely associated with the risk of coronary heart disease (CHD). Methods We examined the relationship between total and soluble dietary fiber intake and the risk of CHD and cardiovascular disease (CVD) in 9776 adults who participated in the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study and were free of CVD at baseline. A 24-hour dietary recall was conducted at the baseline examination, and nutrient intakes were calculated using Food Processor software. Incidence and mortality data for CHD and CVD were obtained from medical records and death certificates during follow-up. Results During an average of 19 years of follow-up, 1843 incident cases of CHD and 3762 incident cases of CVD were documented. Compared with the lowest quartile of dietary fiber intake (median, 5.9 g/d), participants in the highest quartile (median, 20.7 g/d) had an adjusted relative risk of 0.88 (95% confidence interval [CI], 0.74-1.04;P= .05 for trend) for CHD events and of 0.89 (95% CI, 0.80-0.99;P= .01 for trend) for CVD events. The relative risks for those in the highest (median, 5.9 g/d) compared with those in the lowest (median, 0.9 g/d) quartile of water-soluble dietary fiber intake were 0.85 (95% CI, 0.74-0.98;P= .004 for trend) for CHD events and 0.90 (95% CI, 0.82-0.99;P= .01 for trend) for CVD events. Conclusion A higher intake of dietary fiber, particularly water-soluble fiber, reduces the risk of CHD.

265 citations

Journal ArticleDOI
TL;DR: The hypothesis that methods focusing on screening peptide libraries in vitro for members with the appropriate interfacial activity can enable the design, selection, and discovery of novel, potent, and broad-spectrum membrane-active antibiotics is put forth.
Abstract: We recently described ten peptides selected from a 16,384-member combinatorial library based on their ability to permeabilize synthetic lipid vesicles in vitro (Rathinakumar R and Wimley WC, J. Am. Chem. Soc. 2008, 130, 9849-9858). These peptides did not share a common sequence motif, length or net charge; nonetheless they shared a mechanism of action that is similar to the natural membrane permeabilizing antimicrobial peptides (AMP). To characterize the selected peptides and to compare the activity of AMPs in vivo and in vitro we report on the biological activity of the same selected peptides in bacteria, fungi, and mammalian cells. Each of the peptides has sterilizing activity against all classes of microbes tested, at 2-8 μM peptide, with only slight hemolytic or cytotoxicity against mammalian cells. Similar to many natural AMPs, bacteria are killed within a few minutes of peptide addition and the lethal step in vivo is membrane permeabilization. Single D-amino acid substitutions eliminated or diminished the secondary structure of the peptides and yet they retained activity against some microbes. Thus, secondary structure and biological activity are not coupled, consistent with the hypothesis that AMPs do not form pores of well defined structure in membranes, but rather destabilize membranes by partitioning into membrane interfaces and disturbing the organization of the lipids, a property that we have called “interfacial activity”. The observation that broad-spectrum activity, but not all antimicrobial activity, is lost by small changes to the peptides suggests that the in vitro screen is specifically selecting for the rare peptides that have broad-spectrum activity. We put forth the hypothesis that methods focusing on screening peptide libraries in vitro for members with the appropriate interfacial activity can enable the design, selection and discovery of novel, potent and broad-spectrum membrane-active antibiotics.

265 citations


Authors

Showing all 24722 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
JoAnn E. Manson2701819258509
Frank B. Hu2501675253464
Eric B. Rimm196988147119
Krzysztof Matyjaszewski1691431128585
Nicholas J. White1611352104539
Tien Yin Wong1601880131830
Tomas Hökfelt158103395979
Thomas E. Starzl150162591704
Geoffrey Burnstock141148899525
Joseph Sodroski13854277070
Glenn M. Chertow12876482401
Darwin J. Prockop12857687066
Kenneth J. Pienta12767164531
Charles Taylor12674177626
Network Information
Related Institutions (5)
Duke University
200.3K papers, 10.7M citations

95% related

Yale University
220.6K papers, 12.8M citations

94% related

University of Pennsylvania
257.6K papers, 14.1M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022372
20212,623
20202,491
20192,038
20181,795