scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the microstructures and mechanical properties of stainless steel/copper laser welding were investigated by controlling the processing parameters of welding speed and laser power as well as the offset and incline angle of the laser beam in the direction of the stainless steel.

137 citations

Journal ArticleDOI
TL;DR: The control design and experiment validation of a flexible two-link manipulator (FTLM) system represented by ordinary differential equations (ODEs) are discussed and a reinforcement learning (RL) control strategy is developed that is based on actor–critic structure to enable vibration suppression while retaining trajectory tracking.
Abstract: This article discusses the control design and experiment validation of a flexible two-link manipulator (FTLM) system represented by ordinary differential equations (ODEs). A reinforcement learning (RL) control strategy is developed that is based on actor–critic structure to enable vibration suppression while retaining trajectory tracking. Subsequently, the closed-loop system with the proposed RL control algorithm is proved to be semi-global uniform ultimate bounded (SGUUB) by Lyapunov’s direct method. In the simulations, the control approach presented has been tested on the discretized ODE dynamic model and the analytical claims have been justified under the existence of uncertainty. Eventually, a series of experiments in a Quanser laboratory platform are investigated to demonstrate the effectiveness of the presented control and its application effect is compared with PD control.

136 citations

Journal ArticleDOI
TL;DR: The authors' results in Sb3+ doped Cs2SnCl6 materials provides insights into the machanisms of doping-induced emission centers, and it extends the existing knowledge of optical properties of doped halide NCs for further studies.
Abstract: Doped halide perovskite nanocrystals (NCs) have opened new opportunities for the emerging optical and optoelectronic applications. Here, we describe a hot-injection synthesis of all-inorganic lead-free Cs2SnCl6 and Sb3+ doped Cs2SnCl6 NCs. Cs2SnCl6 NCs present a blue emission peak at 438 nm, whereas a new broad-band emission peak appears at 615 nm for the Sb3+ doped NCs. Comparative structural and spectral characterizations of Sb3+ doped Cs2SnCl6 NCs with micrometer-sized undoped and Sb3+ doped crystals show that the formation of broad-band orange emission is originted from triplet self-trapped excitons, attributed to the 3Pn-1S0 transitions (n = 0, 1, 2). Our results in Sb3+ doped Cs2SnCl6 materials provide insights into the machanisms of doping-induced emission centers, and it extends the existing knowledge of optical properties of doped halide NCs for further studies.

136 citations

Journal ArticleDOI
TL;DR: A combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystaline wires for real-time detection of chemical analytes.
Abstract: The development of materials with high efficiency and stable signal output in a bent state is important for flexible electronics. Grain boundaries provide lasting inspiration and a promising avenue for designing advanced functionalities using nanomaterials. Combining bulk defects in polycrystalline materials is shown to result in rich new electronic structures, catalytic activities, and mechanical properties for many applications. However, direct evidence that grain boundaries can create new physicochemical properties in flexible electronics is lacking. Here, a combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystalline wires for real-time detection of chemical analytes. The existence of a grain boundary improves the electronic and mechanical properties, which activate and stabilize materials, and allow new opportunities to design highly sensitive, flexible chemical sensors.

136 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,664
20204,369
20194,164
20183,586