scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A systematic review of over 20 major time-frequency analysis methods reported in more than 100 representative articles published since 1990 can be found in this article, where their fundamental principles, advantages and disadvantages, and applications to fault diagnosis of machinery have been examined.

719 citations

Journal ArticleDOI
TL;DR: Aqueous Zn-V2O5 battery chemistry is reported in this paper, which employs commercial V2O-5 cathode, Zn anode, and 3 M Zn(CF3SO3)2 electrolyte.
Abstract: We report an aqueous Zn–V2O5 battery chemistry employing commercial V2O5 cathode, Zn anode, and 3 M Zn(CF3SO3)2 electrolyte. We elucidate the Zn-storage mechanism in the V2O5 cathode to be that hydrated Zn2+ can reversibly (de)intercalate through the layered structure. The function of the co-intercalated H2O is revealed to be shielding the electrostatic interactions between Zn2+ and the host framework, accounting for the enhanced kinetics. In addition, the pristine bulk V2O5 gradually evolves into porous nanosheets upon cycling, providing more active sites for Zn2+ storage and thus rendering an initial capacity increase. As a consequence, a reversible capacity of 470 mAh g–1 at 0.2 A g–1 and a long-term cyclability with 91.1% capacity rentention over 4000 cycles at 5 A g–1 are achieved. The combination of the good battery performance, safety, scalable materials synthesis, and facile cell assembly indicates this aqueous Zn–V2O5 system is promising for stationary grid storage applications.

675 citations

Journal ArticleDOI
08 Sep 2017-Science
TL;DR: The deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation.
Abstract: A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.

673 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized and divided recent intensification technologies of water electrolysis into three categories: external field, new electrolyte composition, and new thermodynamic reaction system.
Abstract: Water electrolysis derived by renewable energy such as solar energy and wind energy is a sustainable method for hydrogen production due to high purity, simple and green process. One of the challenges is to reduce energy consumption of water electrolysis for large-scale application in future. Cell voltage, an important criterion of energy consumption, consists of theoretical decomposition voltage (U-theta), ohmic voltage drop (i*Sigma R) and reaction overpotential (eta). The kinetic and thermodynamic roots of high cell voltage are analyzed systemically in this review. During water electrolysis, bubble coverage on electrode surface and bubble dispersion in electrolyte, namely bubble effect, result in high ohmic voltage drop and large reaction overpotential. Bubble effect is one of the most key factors for high energy consumption. Based on the theoretical analysis, we summarize and divide recent intensification technologies of water electrolysis into three categories: external field, new electrolyte composition and new thermodynamic reaction system. The fundamentals and development of these intensification technologies are discussed and reviewed. Reaction overpotential and ohmic voltage drop are improved kinetically by external field or new electrolyte composition. The thermodynamic decomposition voltage of water is also reduced by new reaction systems such as solid oxide electrolysis cell (SOEC) and carbon assisted water electrolysis (CAWE). (C) 2013 Elsevier Ltd. All rights reserved.

665 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal infusion strategy for prestoring lithium into a stable nickel foam host is demonstrated and a composite anode is achieved, which exhibits stable voltage profiles (200 mV at 5.0 mA cm−2) with a small hysteresis beyond 100 cycles in carbonate-based electrolyte.
Abstract: Lithium metal is considered a “Holy Grail” of anode materials for high-energy-density batteries. However, both dendritic lithium deposition and infinity dimension change during long-term cycling have extremely restricted its practical applications for energy storage devices. Here, a thermal infusion strategy for prestoring lithium into a stable nickel foam host is demonstrated and a composite anode is achieved. In comparison with the bare lithium, the composite anode exhibits stable voltage profiles (200 mV at 5.0 mA cm−2) with a small hysteresis beyond 100 cycles in carbonate-based electrolyte, as well as high rate capability, significantly reduced interfacial resistance, and small polarization in a full-cell battery with Li4Ti5O12 or LiFePO4 as counter electrode. More importantly, in addition to the fact that lithium is successfully confined in the metallic nickel foam host, uniform lithium plating/stripping is achieved with a low dimension change (merely ≈3.1%) and effective inhibition of dendrite formation. The mechanism for uniform lithium stripping/plating behavior is explained based on a surface energy model.

659 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,664
20204,369
20194,164
20183,586