scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a duplex layer structure of FeCO3 films was found by electrochemical impedance spectrum (EIS), and the physical and chemical situations of solution near carbon steel surface were investigated by ultraviolet spectrophotometry and chronopotentiometry.

157 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a modeling method of task-oriented energy consumption for machining manufacturing system, which describes that energy consumption dynamically depends on the flexibility and variability of task flow in production processes.

157 citations

Journal ArticleDOI
TL;DR: In this paper, a Cr3+-doped halide perovskite, Cs2AgInCl6:Cr3+, which exhibits broadband near-infrared (NIR) emission is first obtained via the traditional high temperature solid-state reaction.
Abstract: Searching for high performance and broader applications of inorganic halide perovskites has drawn extensive attention. In this work, a Cr3+-doped halide perovskite, Cs2AgInCl6:Cr3+, which exhibits broadband near-infrared (NIR) emission is first obtained via the traditional high temperature solid-state reaction. A broad emission band ranging from 850 to 1350 nm centered at 1010 nm with a full-width at half-maximum (FWHM) of 180 nm is assigned to the spin-allowed 4T2 → 4A2 transition of octahedrally coordinated Cr3+ ions in a very weak crystal-field environment. The excitation bands centered at 353, 565 and 800 nm can be attributed to the absorption of the Cs2AgInCl6 host, the Cr3+ d–d transitions of 4A2 → 4T1 and 4A2 → 4T2, respectively. Upon 760 nm excitation, the photoluminescence quantum yield (PLQY) of Cs2AgIn0.9Cl6:0.1Cr3+ is about ∼22.03%. Cs2AgInCl6:Cr3+ phosphors with such broadband NIR emission have potential in phosphor converted light emitting diodes (pc-LEDs) which have applications in bioimaging and biomonitoring.

157 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the exciton-plasmon interaction from basic principle to applications, which demonstrate different optical properties, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching.
Abstract: Abstract The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

157 citations

Journal ArticleDOI
TL;DR: The composites with selective localization of p-SiC exhibit the best combined properties of thermal conductivity and flame retardancy.
Abstract: The effect of selective localization of silicon carbide (SiC) and polystyrene (PS)-coated SiC (p-SiC) nanoparticles on the thermal conductivity and flame retardancy of immiscible PS/poly(vinylidene fluoride) (PVDF) blends has been systematically studied. The scanning electron microscopy (SEM) images reveal that SiC and p-SiC nanoparticles have different selective localizations in the PS/PVDF blends. The melting and crystallization behaviors of the PVDF component investigated by using differential scanning calorimetry are consistent with the SEM results. To reduce the volume fraction of fillers in the composites, a cocontinuous structure of PS/PVDF has also been built up. The cocontinuity window for PS/PVDF blends is ∼30–70 vol % according to the selective solvent dissolution technique. The selective localization of SiC in the PVDF phase of the PS/PVDF 70/30 blends produces a slightly higher thermal conductivity than that of p-SiC in the PS phase of the PS/PVDF 30/70 blends. However, the composites with se...

157 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,664
20204,369
20194,164
20183,586