scispace - formally typeset
Search or ask a question
Institution

University of Tokyo

EducationTokyo, Japan
About: University of Tokyo is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 134564 authors who have published 337567 publications receiving 10178620 citations. The organization is also known as: Todai & Universitas Tociensis.
Topics: Population, Gene, Catalysis, Magnetic field, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: This Review briefly highlights the various molecular flasks synthesized before focusing on their use as functional molecular containers--specifically for the encapsulation of guest molecules to either engender unusual reactions or unique chemical phenomena.
Abstract: The application of self-assembled hosts as "molecular flasks" has precipitated a surge of interest in the reactivity and properties of molecules within well-defined confined spaces. The facile and modular synthesis of self-assembled hosts has enabled a variety of hosts of differing sizes, shapes, and properties to be prepared. This Review briefly highlights the various molecular flasks synthesized before focusing on their use as functional molecular containers--specifically for the encapsulation of guest molecules to either engender unusual reactions or unique chemical phenomena. Such self-assembled cavities now constitute a new phase of chemistry, which cannot be achieved in the conventional solid, liquid, and gas phases.

1,578 citations

Journal ArticleDOI
Bin Zhou1, James Bentham1, Mariachiara Di Cesare2, Honor Bixby1  +787 moreInstitutions (231)
TL;DR: The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries, and the contributions of changes in prevalence versus population growth and ageing to the increase.

1,573 citations

Journal ArticleDOI
TL;DR: In this article, a high-quality electron beam with 1 GeV energy was achieved by channelling a 40 TW peak-power laser pulse in a 3.3 cm-long gas-filled capillary discharge waveguide.
Abstract: Gigaelectron volt (GeV) electron accelerators are essential to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10–50 MV m−1), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators1,2 produce electric fields of the order 10–100 GV m−1 enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale3,4,5. Contrary to predictions that petawatt-class lasers would be needed to reach GeV energies6,7, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channelling a 40 TW peak-power laser pulse in a 3.3-cm-long gas-filled capillary discharge waveguide8,9.

1,568 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: In this article, a new mechanism of the magnetoelectric effect based on the spin supercurrent was theoretically presented in terms of a microscopic electronic model for noncollinear magnets.
Abstract: A new mechanism of the magnetoelectric effect based on the spin supercurrent is theoretically presented in terms of a microscopic electronic model for noncollinear magnets. The electric polarization P(ij) produced between the two magnetic moments S(i) and S(j) is given by P proportional e(ij) X (S(i) X S(j)) with e(ij) being the unit vector connecting the sites i and j. Applications to the spiral spin structure and the gauge theoretical interpretation are discussed.

1,562 citations


Authors

Showing all 135252 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
D. M. Strom1763167194314
Masayuki Yamamoto1711576123028
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Qiang Zhang1611137100950
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

98% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023354
20221,250
202112,943
202013,512
201912,656