scispace - formally typeset
Search or ask a question
Institution

University of Tokyo

EducationTokyo, Japan
About: University of Tokyo is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 134564 authors who have published 337567 publications receiving 10178620 citations. The organization is also known as: Todai & Universitas Tociensis.
Topics: Population, Gene, Catalysis, Magnetic field, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a theoretical framework for the thermodynamics of information based on stochastic thermodynamics and fluctuation theorems, review some recent experimental results, and present an overview of the state of the art in the field.
Abstract: By its very nature, the second law of thermodynamics is probabilistic, in that its formulation requires a probabilistic description of the state of a system. This raises questions about the objectivity of the second law: does it depend, for example, on what we know about the system? For over a century, much effort has been devoted to incorporating information into thermodynamics and assessing the entropic and energetic costs of manipulating information. More recently, this historically theoretical pursuit has become relevant in practical situations where information is manipulated at small scales, such as in molecular and cell biology, artificial nano-devices or quantum computation. Here we give an introduction to a novel theoretical framework for the thermodynamics of information based on stochastic thermodynamics and fluctuation theorems, review some recent experimental results, and present an overview of the state of the art in the field. The task of integrating information into the framework of thermodynamics dates back to Maxwell and his infamous demon. Recent advances have made these ideas rigorous—and brought them into the laboratory.

879 citations

Journal ArticleDOI
Y. Fukuda1, M. Ishitsuka1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, K. Kaneyuki1, K. Kobayashi1, Yusuke Koshio1, M. Miura1, S. Moriyama1, Masayuki Nakahata1, S. Nakayama1, A. Okada1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, H. Takeuchi1, Y. Takeuchi1, T. Toshito1, Y. Totsuka1, Shoichi Yamada1, Shantanu Desai2, M. Earl2, E. Kearns2, M. D. Messier2, Kate Scholberg3, Kate Scholberg2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber4, T. Barszczak5, David William Casper5, W. Gajewski5, W. R. Kropp5, S. Mine5, D. W. Liu5, L. R. Price5, M. B. Smy5, Henry W. Sobel5, M. R. Vagins5, Todd Haines5, D. Kielczewska5, K. S. Ganezer6, W. E. Keig6, R. W. Ellsworth7, S. Tasaka8, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, Y. Hayato, T. Ishii, Takashi Kobayashi, Koji Nakamura, Y. Obayashi, Y. Oyama, A. Sakai, Makoto Sakuda, M. Kohama9, Atsumu Suzuki9, T. Inagaki10, Tsuyoshi Nakaya10, K. Nishikawa10, E. Blaufuss11, S. Dazeley11, R. Svoboda11, J. A. Goodman12, G. Guillian12, G. W. Sullivan12, D. Turcan12, Alec Habig13, J. Hill14, C. K. Jung14, K. Martens15, K. Martens14, Magdalena Malek14, C. Mauger14, C. McGrew14, E. Sharkey14, B. Viren14, C. Yanagisawa14, C. Mitsuda16, K. Miyano16, C. Saji16, T. Shibata16, Y. Kajiyama17, Y. Nagashima17, K. Nitta17, M. Takita17, Minoru Yoshida17, Heekyong Kim18, Soo-Bong Kim18, J. Yoo18, H. Okazawa, T. Ishizuka19, M. Etoh20, Y. Gando20, Takehisa Hasegawa20, Kunio Inoue20, K. Ishihara20, Tomoyuki Maruyama20, J. Shirai20, A. Suzuki20, Masatoshi Koshiba1, Y. Hatakeyama21, Y. Ichikawa21, M. Koike21, Kyoshi Nishijima21, H. Fujiyasu22, Hirokazu Ishino22, M. Morii22, Y. Watanabe22, U. Golebiewska23, S. C. Boyd24, A. L. Stachyra24, R. J. Wilkes24, B. Lee 
TL;DR: Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented and the recoil electron energy spectrum is consistent with no spectral distortion.
Abstract: Solar neutrino measurements from 1258days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0{endash}20.0MeV. The measured solar neutrino flux is 2.32{+-}0.03(stat){sup +0.08}{sub {minus}0.07}(syst){times}10{sup 6} cm{sup {minus}2}s{sup {minus}1} , which is 45.1{+-}0.5(stat ){sup +1.6}{sub {minus}1.4}(syst) % of that predicted by the BP2000 SSM. The day vs night flux asymmetry ({Phi}{sub n}{minus}{Phi}{sub d})/ {Phi}{sub average} is 0.033{+-}0.022(stat){sup +0.013}{sub {minus}0.012}(syst) . The recoil electron energy spectrum is consistent with no spectral distortion. For the hep neutrino flux, we set a 90% C.L.upper limit of 40{times}10{sup 3} cm{sup {minus}2}s{sup {minus}1} , which is 4.3times the BP2000 SSM prediction.

878 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent results of the nucleosynthesis yields of mainly massive stars for a wide range of stellar masses, metallicities, and explosion energies, and provide yields tables and examine how those yields are affected by some hydrodynamical effe...
Abstract: After the Big Bang, production of heavy elements in the early Universe takes place starting from the formation of the first stars, their evolution, and explosion. The first supernova explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of the Universe's first stars and supernova explosions has not been well clarified. The signature of the nucleosynthesis yields of the first stars can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of stars. We thus review the recent results of the nucleosynthesis yields of mainly massive stars for a wide range of stellar masses, metallicities, and explosion energies. We also provide yields tables and examine how those yields are affected by some hydrodynamical effe...

878 citations

Journal ArticleDOI
11 Dec 2009-Science
TL;DR: A sensor matrix is realized that detects the spatial distribution of applied mechanical pressure and stores the analog sensor input as a two-dimensional image over long periods of time by integrating a flexible array of organic floating-gate transistors with a pressure-sensitive rubber sheet.
Abstract: Using organic transistors with a floating gate embedded in hybrid dielectrics that comprise a 2-nanometer-thick molecular self-assembled monolayer and a 4-nanometer-thick plasma-grown metal oxide, we have realized nonvolatile memory arrays on flexible plastic substrates. The small thickness of the dielectrics allows very small program and erase voltages (≤6 volts) to produce a large, nonvolatile, reversible threshold-voltage shift. The transistors endure more than 1000 program and erase cycles, which is within two orders of magnitude of silicon-based floating-gate transistors widely employed in flash memory. By integrating a flexible array of organic floating-gate transistors with a pressure-sensitive rubber sheet, we have realized a sensor matrix that detects the spatial distribution of applied mechanical pressure and stores the analog sensor input as a two-dimensional image over long periods of time.

877 citations

Journal ArticleDOI
Ryogo Kubo1
TL;DR: The level spacing of quantized electronic states becomes fairly large in very fine particles as mentioned in this paper, and the thermal properties may show considerable deviations from the normal bulk values for such fine particles.
Abstract: The level spacing of quantized electronic states becomes fairly large in very fine particles. For instance, it will be comparable to k T at T =1°K if the linear dimension of a particle is 50 A or so. Thermal properties may show considerable deviations from the normal bulk values for such fine particles. The heat capacity will be reduced to about two-thirds and the paramagnetic susceptibility may be enhanced. Even more important effects are expected for relaxation processes. They are discussed briefly, but more detailed treatments will be given in a forth-coming paper.

876 citations


Authors

Showing all 135252 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
D. M. Strom1763167194314
Masayuki Yamamoto1711576123028
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Qiang Zhang1611137100950
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

98% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023354
20221,250
202112,943
202013,512
201912,656