scispace - formally typeset
Search or ask a question

Showing papers by "University of Wollongong published in 2016"


Journal ArticleDOI
John Allison1, K. Amako2, John Apostolakis3, Pedro Arce4, Makoto Asai5, Tsukasa Aso6, Enrico Bagli, Alexander Bagulya7, Sw. Banerjee8, G. Barrand9, B. R. Beck10, Alexey Bogdanov11, D. Brandt, Jeremy M. C. Brown12, Helmut Burkhardt3, Ph Canal8, D. Cano-Ott4, Stephane Chauvie, Kyung-Suk Cho13, G.A.P. Cirrone14, Gene Cooperman15, M. A. Cortés-Giraldo16, G. Cosmo3, Giacomo Cuttone14, G.O. Depaola17, Laurent Desorgher, X. Dong15, Andrea Dotti5, Victor Daniel Elvira8, Gunter Folger3, Ziad Francis18, A. Galoyan19, L. Garnier9, M. Gayer3, K. Genser8, Vladimir Grichine3, Vladimir Grichine7, Susanna Guatelli20, Susanna Guatelli21, Paul Gueye22, P. Gumplinger23, Alexander Howard24, Ivana Hřivnáčová9, S. Hwang13, Sebastien Incerti25, Sebastien Incerti26, A. Ivanchenko3, Vladimir Ivanchenko3, F.W. Jones23, S. Y. Jun8, Pekka Kaitaniemi27, Nicolas A. Karakatsanis28, Nicolas A. Karakatsanis29, M. Karamitrosi30, M.H. Kelsey5, Akinori Kimura31, Tatsumi Koi5, Hisaya Kurashige32, A. Lechner3, S. B. Lee33, Francesco Longo34, M. Maire, Davide Mancusi, A. Mantero, E. Mendoza4, B. Morgan35, K. Murakami2, T. Nikitina3, Luciano Pandola14, P. Paprocki3, J Perl5, Ivan Petrović36, Maria Grazia Pia, W. Pokorski3, J. M. Quesada16, M. Raine, Maria A.M. Reis37, Alberto Ribon3, A. Ristic Fira36, Francesco Romano14, Giorgio Ivan Russo14, Giovanni Santin38, Takashi Sasaki2, D. Sawkey39, J. I. Shin33, Igor Strakovsky40, A. Taborda37, Satoshi Tanaka41, B. Tome, Toshiyuki Toshito, H.N. Tran42, Pete Truscott, L. Urbán, V. V. Uzhinsky19, Jerome Verbeke10, M. Verderi43, B. Wendt44, H. Wenzel8, D. H. Wright5, Douglas Wright10, T. Yamashita, J. Yarba8, H. Yoshida45 
TL;DR: Geant4 as discussed by the authors is a software toolkit for the simulation of the passage of particles through matter, which is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.

2,260 citations


Journal ArticleDOI
TL;DR: The Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep provide evidence-informed recommendations for a healthy day (24 h), comprising a combination of sleep, sedentary behaviours, light-, moderate-, and vigorous-intensity physical activity.
Abstract: Leaders from the Canadian Society for Exercise Physiology convened representatives of national organizations, content experts, methodologists, stakeholders, and end-users who followed rigorous and transparent guideline development procedures to create the Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. These novel guidelines for children and youth aged 5-17 years respect the natural and intuitive integration of movement behaviours across the whole day (24-h period). The development process was guided by the Appraisal of Guidelines for Research Evaluation (AGREE) II instrument and systematic reviews of evidence informing the guidelines were assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Four systematic reviews (physical activity, sedentary behaviour, sleep, integrated behaviours) examining the relationships between and among movement behaviours and several health indicators were completed and interpreted by expert consensus. Complementary compositional analyses were performed using Canadian Health Measures Survey data to examine the relationships between movement behaviours and health indicators. A stakeholder survey was employed (n = 590) and 28 focus groups/stakeholder interviews (n = 104) were completed to gather feedback on draft guidelines. Following an introductory preamble, the guidelines provide evidence-informed recommendations for a healthy day (24 h), comprising a combination of sleep, sedentary behaviours, light-, moderate-, and vigorous-intensity physical activity. Proactive dissemination, promotion, implementation, and evaluation plans have been prepared in an effort to optimize uptake and activation of the new guidelines. Future research should consider the integrated relationships among movement behaviours, and similar integrated guidelines for other age groups should be developed.

1,114 citations


Journal ArticleDOI
TL;DR: Density function theory calculations further reveal that the different types of defects are essential for the individual electrocatalytic activity for ORR, OER, and HER, respectively.
Abstract: Defects derived by the removal of heteroatoms from graphene are demonstrated, both experimentally and theoretically, to be effective for all three basic electrochemical reactions, e.g., oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER). Density function theory calculations further reveal that the different types of defects are essential for the individual electrocatalytic activity for ORR, OER, and HER, respectively.

874 citations


Journal ArticleDOI
TL;DR: The trends indicate that hydrogels that self-heal better also achieve self- healing faster, as compared to gels that only partially self- Healing, and the potential relevance of self-Healing hydrogel to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.
Abstract: Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self-healing and self-recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self-healing hydrogels generally either possess mechanically robust or rapid self-healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self-healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self-healing hydrogels are reviewed. Specifically, methods to test self-healing efficiencies and recoveries, mechanisms of autonomous self-healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self-heal better also achieve self-healing faster, as compared to gels that only partially self-heal. Recommendations to guide future development of self-healing hydrogels are offered and the potential relevance of self-healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.

871 citations


Journal ArticleDOI
TL;DR: This systematic review is an update examining the relationships between objectively and subjectively measured sedentary behaviour and health indicators in children and youth aged 5-17 years and found higher durations/frequencies of screen time and television viewing were associated with unfavourable body composition.
Abstract: Accumulating evidence suggests that, independent of physical activity levels, sedentary behaviours are associated with increased risk of cardio-metabolic disease, all-cause mortality, and a variety of physiological and psychological problems. Therefore, the purpose of this systematic review is to determine the relationship between sedentary behaviour and health indicators in school-aged children and youth aged 5-17 years. Online databases (MEDLINE, EMBASE and PsycINFO), personal libraries and government documents were searched for relevant studies examining time spent engaging in sedentary behaviours and six specific health indicators (body composition, fitness, metabolic syndrome and cardiovascular disease, self-esteem, pro-social behaviour and academic achievement). 232 studies including 983,840 participants met inclusion criteria and were included in the review. Television (TV) watching was the most common measure of sedentary behaviour and body composition was the most common outcome measure. Qualitative analysis of all studies revealed a dose-response relation between increased sedentary behaviour and unfavourable health outcomes. Watching TV for more than 2 hours per day was associated with unfavourable body composition, decreased fitness, lowered scores for self-esteem and pro-social behaviour and decreased academic achievement. Meta-analysis was completed for randomized controlled studies that aimed to reduce sedentary time and reported change in body mass index (BMI) as their primary outcome. In this regard, a metaanalysis revealed an overall significant effect of -0.81 (95% CI of -1.44 to -0.17, p = 0.01) indicating an overall decrease in mean BMI associated with the interventions. There is a large body of evidence from all study designs which suggests that decreasing any type of sedentary time is associated with lower health risk in youth aged 5-17 years. In particular, the evidence suggests that daily TV viewing in excess of 2 hours is associated with reduced physical and psychosocial health, and that lowering sedentary time leads to reductions in BMI.

819 citations


Journal ArticleDOI
TL;DR: The results illuminate the significant moderating impact of analytics capability–business strategy alignment on the BDAC–FPER relationship and the value of the entanglement conceptualization of the higher-order BDAC model and its impact on FPER.

754 citations


Journal ArticleDOI
TL;DR: This review discusses the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems and presents a comprehensive review of recent developments and key applications of inertialMicrofluidics systems according to their microchannel structures.
Abstract: In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

711 citations


Journal ArticleDOI
TL;DR: This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8 and ZIF-67), and shows the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations.
Abstract: ConspectusThe future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production.Metal–organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their lo...

629 citations


Journal ArticleDOI
TL;DR: Ultrafine SnS/SnO2 heterostructures were successfully fabricated and showed enhanced charge-transfer capability and the mobility enhancement is attributed to the interface effect of heterostructure, which induces an electric field within the nanocrystals, giving them much lower ion-diffusion resistance and facilitating interfacial electron transport.
Abstract: Constructing heterostructures can endow materials with fascinating performance in high-speed electronics, optoelectronics, and other applications owing to the built-in charge-transfer driving force, which is of benefit to the specific charge-transfer kinetics. Rational design and controllable synthesis of nano-heterostructure anode materials with high-rate performance, however, still remains a great challenge. Herein, ultrafine SnS/SnO2 heterostructures were successfully fabricated and showed enhanced charge-transfer capability. The mobility enhancement is attributed to the interface effect of heterostructures, which induces an electric field within the nanocrystals, giving them much lower ion-diffusion resistance and facilitating interfacial electron transport.

622 citations


Journal ArticleDOI
03 Mar 2016-Nature
TL;DR: Experimental evidence is provided that the formation of carbon–carbon bonds is accelerated by an electric field, and a fivefold increase in the frequency of formation of single-molecule junctions is found.
Abstract: It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

541 citations


Journal ArticleDOI
TL;DR: A facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process offers an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption.
Abstract: Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of −32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than −10 dB. The better performance of the c...

Journal ArticleDOI
TL;DR: A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation.
Abstract: The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

Journal ArticleDOI
TL;DR: In this article, an Urchin-like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium-ion batteries with ether-based electrolytes.
Abstract: Urchin-like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium-ion batteries (SIBs) with ether-based electrolytes. The CoSe2 delivers excellent sodiation and desodiation properties when using 1 m NaCF3SO3 in diethyleneglycol dimethylether as an electrolyte and cycling between 0.5 and 3.0 V. A high discharge capacity of 0.410 Ah g−1 is obtained at 1 A g−1 after 1800 cycles, corresponding to a capacity retention of 98.6% calculated from the 30th cycle. Even at an ultrahigh rate of 50 A g−1, the capacity still maintains 0.097 Ah g−1. The reaction mechanism of the as-prepared CoSe2 is also investigated. The results demonstrate that at discharged 1.56 V, insertion reaction occurs, while two conversion reactions take place at the second and third plateaus around 0.98 and 0.65 V. During the charge process, Co first reacts with Na2Se to form NaxCoSe2 and then turns back to CoSe2. In addition to Na/CoSe2 half cells, Na3V2(PO4)3/CoSe2 full cell with excessive amount of Na3V2(PO4)3 has been studied. The full cell exhibits a reversible capacity of 0.380 Ah g−1. This work definitely enriches the possibilities for anode materials for SIBs with high performance.

Journal ArticleDOI
TL;DR: An interpretive framework is presented that explores the definitional aspects, distinctive characteristics, types, business value and challenges of BDA in the e-commerce landscape and synthesizes diverse BDA concepts that provide deeper insights along the cross-cutting analytics applications in e- commerce.
Abstract: There has been an increasing emphasis on big data analytics (BDA) in e-commerce in recent years. However, it remains poorly-explored as a concept, which obstructs its theoretical and practical development. This position paper explores BDA in e-commerce by drawing on a systematic review of the literature. The paper presents an interpretive framework that explores the definitional aspects, distinctive characteristics, types, business value and challenges of BDA in the e-commerce landscape. The paper also triggers broader discussions regarding future research challenges and opportunities in theory and practice. Overall, the findings of the study synthesize diverse BDA concepts (e.g., definition of big data, types, nature, business value and relevant theories) that provide deeper insights along the cross-cutting analytics applications in e-commerce.

Journal ArticleDOI
22 Sep 2016-Nature
TL;DR: Evidence for ancient life from a newly exposed outcrop of 3,700-Myr-old metacarbonate rocks in the ISB that contain 1–4-cm-high stromatolites demonstrates the establishment of shallow marine carbonate production with biotic CO2 sequestration by 3-700 million years ago, near the start of Earth’s sedimentary record.
Abstract: Stromatolites are sedimentary formations created by the layered growth of microorganisms in shallow marine settings. Fossil stromatolites constitute some of the earliest evidence for life on Earth. Allen Nutman et al. describe metamorphosed stromatolites deposited around 3,700 million years ago in what is now Greenland. This is more than 200 million years older than the previous record-holders for earliest-known fossils, so these stromatolites rank as the Earth's earliest fossils by some margin. Although there is indirect evidence from isotope geochemistry that the pedigree of life on Earth is even older, this report is likely to be controversial.

Journal ArticleDOI
TL;DR: This systematic review is the first that has investigated correlates of gross motor competence in children and adolescents and suggests that evidence for some correlates differs according to how motor competence is operationalized.
Abstract: Background Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed.

Journal ArticleDOI
TL;DR: Control of the growth of precursor MOFs has enabled 1D carbon nanorods to be fabricated — these can then be readily unravelled into 2D graphene nanoribbons.
Abstract: The calcination of metal–organic framework (MOF) precursors is promising for the preparation of nanoscale carbon materials, but the resulting morphologies have remained limited. Now, controlling the growth of precursor MOFs has enabled 1D carbon nanorods to be fabricated — these can then be readily unravelled into 2D graphene nanoribbons.

Journal ArticleDOI
TL;DR: Higher workloads can have either positive or negative influences on injury risk in elite rugby league players, and players with a high chronic workload are more resistant to injury with moderate-low through moderate-high (0.85–1.35) acute:chronic workload ratios and lessresistant to injury when subjected to ‘spikes’ in acute workload.
Abstract: Aim Investigate whether acute workload (1 week total distance) and chronic workload (4-week average acute workload) predict injury in elite rugby league players. Methods Data were collected from 53 elite players over two rugby league seasons. The 'acute:chronic workload ratio' was calculated by dividing acute workload by chronic workload. A value of greater than 1 represented an acute workload greater than chronic workload. All workload data were classified into discrete ranges by z-scores. Results Compared with all other ratios, a very-high acute:chronic workload ratio (2.11) demonstrated the greatest risk of injury in the current week (16.7% injury risk) and subsequent week (11.8% injury risk). High chronic workload (>16 095 m) combined with a veryhigh 2-week average acute:chronic workload ratio (1.54) was associated with the greatest risk of injury (28.6% injury risk). High chronic workload combined with a moderate workload ratio (1.02-1.18) had a smaller risk of injury than low chronic workload combined with several workload ratios (relative risk range from 0.3 to 0.7×/1.4 to 4.4; likelihood range=88-94%, likely). Considering acute and chronic workloads in isolation (ie, not as ratios) did not consistently predict injury risk. Conclusions Higher workloads can have either positive or negative influences on injury risk in elite rugby league players. Specifically, compared with players who have a low chronic workload, players with a high chronic workload are more resistant to injury with moderate-low through moderate-high (0.85-1.35) acute:chronic workload ratios and less resistant to injury when subjected to 'spikes' in acute workload, that is, very-high acute:chronic workload ratios 1.5.

Journal ArticleDOI
TL;DR: Evidence supporting healthy dietary patterns provides the foundation for the development of dietary guidelines and the concepts of core and discretionary foods enable distinctions between foods, and this has implications for the relation between food policy and food manufacturing.

Journal ArticleDOI
TL;DR: Evidence to date shows that acute exposure to food advertising increases food intake in children but not in adults, and these data support public health policy action that seeks to reduce children's exposure to unhealthy food advertising.

Journal ArticleDOI
TL;DR: Considering that the high capacity, long-term cycle life, and high-rate capability of anode materials for sodium-ion batteries (SIBs) is a bottleneck currently, a series of Co-doped FeS2 solid solutions with different Co contents were prepared by a facile solvothermal method, and for the first time their Na-storage properties were investigated.
Abstract: Considering that the high capacity, long-term cycle life, and high-rate capability of anode materials for sodium-ion batteries (SIBs) is a bottleneck currently, a series of Co-doped FeS2 solid solutions with different Co contents were prepared by a facile solvothermal method, and for the first time their Na-storage properties were investigated. The optimized Co0.5Fe0.5S2 (Fe0.5) has discharge capacities of 0.220 Ah g−1 after 5000 cycles at 2 A g−1 and 0.172 Ah g−1 even at 20 A g−1 with compatible ether-based electrolyte in a voltage window of 0.8–2.9 V. The Fe0.5 sample transforms to layered NaxCo0.5Fe0.5S2 by initial activation, and the layered structure is maintained during following cycles. The redox reactions of NaxCo0.5Fe0.5S2 are dominated by pseudocapacitive behavior, leading to fast Na+ insertion/extraction and durable cycle life. A Na3V2(PO4)3/Fe0.5 full cell was assembled, delivering an initial capacity of 0.340 Ah g−1.

Journal ArticleDOI
TL;DR: This work demonstrates a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms, and highlights the importance of precisely controlling the properties of the carbon materials.
Abstract: Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

Journal ArticleDOI
TL;DR: The field of mesoporous metal nanoarchitectonics offers several advantages which cannot be found elsewhere, and various metal can now be synthesized as dendritic, core@shell, hollow or polyhedral nanoparticles, with single- or multicomponents, alloyed or not, with unprecedented electrochemical activity.
Abstract: The field of mesoporous metal nanoarchitectonics offers several advantages which cannot be found elsewhere. These materials have been showcasing impressive enhancements of their electrochemical properties for further implementation, compared to their micro- and macroporous counterparts. Since the last few decades, various methods have been developed to achieve narrow pore size distribution with a tunable porosity and particle morphology. While hard templates offer a reliable and intuitive approach to synthesize mesoporous metals, the complexity of the technique and the use of harmful chemicals pushed several research groups to focus in other directions. For example, soft templates (e.g., lyotropic crystals, micelles assemblies) and solution phase methods (requiring to control reduction reactions) offer more and more possibilities in terms of available compositions and morphologies. Indeed, various metal (Pt, Pd, Au, Ru, etc.) can now be synthesized as dendritic, core@shell, hollow or polyhedral nanoparticles, with single- or multicomponents, alloyed or not, with unprecedented electrochemical activity.

Journal ArticleDOI
TL;DR: In this article, a framework for building resilience in teacher education is proposed, which is informed by a focused review of relevant literature to determine factors that may be addressed to support teacher resilience and ways in which this may occur.

Journal ArticleDOI
TL;DR: The original concept of coordinated regulation presented in this work can broaden horizons and provide new dimensions in the design of newly highly efficient catalysts for hydrogen evolution.
Abstract: The exploration of efficient nonprecious metal eletrocatalysis of the hydrogen evolution reaction (HER) is an extraordinary challenge for future applications in sustainable energy conversion. The family of first-row-transition-metal dichalcogenides has received a small amount of research, including the active site and dynamics, relative to their extraordinary potential. In response, we developed a strategy to achieve synergistically active sites and dynamic regulation in first-row-transition-metal dichalcogenides by the heterogeneous spin states incorporated in this work. Specifically, taking the metallic Mn-doped pyrite CoSe2 as a self-adaptived, subtle atomic arrangement distortion to provide additional active edge sites for HER will occur in the CoSe2 atomic layers with Mn incorporated into the primitive lattice, which is visually verified by HRTEM. Synergistically, the density functional theory simulation results reveal that the Mn incorporation lowers the kinetic energy barrier by promoting H–H bond ...

Proceedings ArticleDOI
01 Oct 2016
TL;DR: In this article, a joint trajectory map (JTM) was proposed to encode spatio-temporal information carried in 3D skeleton sequences into multiple 2D images, referred to as Joint Trajectory Maps (jTM), and ConvNets were adopted to exploit the discriminative features for real-time human action recognition.
Abstract: Recently, Convolutional Neural Networks (ConvNets) have shown promising performances in many computer vision tasks, especially image-based recognition. How to effectively use ConvNets for video-based recognition is still an open problem. In this paper, we propose a compact, effective yet simple method to encode spatio-temporal information carried in 3D skeleton sequences into multiple 2D images, referred to as Joint Trajectory Maps (JTM), and ConvNets are adopted to exploit the discriminative features for real-time human action recognition. The proposed method has been evaluated on three public benchmarks, i.e., MSRC-12 Kinect gesture dataset (MSRC-12), G3D dataset and UTD multimodal human action dataset (UTD-MHAD) and achieved the state-of-the-art results.

Journal ArticleDOI
TL;DR: The proposed method maintained its performance on the large dataset, whereas the performance of existing methods decreased with the increased number of actions, and the method achieved 2-9% better results on most of the individual datasets.
Abstract: This paper proposes a new method, i.e., weighted hierarchical depth motion maps (WHDMM) + three-channel deep convolutional neural networks (3ConvNets), for human action recognition from depth maps on small training datasets. Three strategies are developed to leverage the capability of ConvNets in mining discriminative features for recognition. First, different viewpoints are mimicked by rotating the 3-D points of the captured depth maps. This not only synthesizes more data, but also makes the trained ConvNets view-tolerant. Second, WHDMMs at several temporal scales are constructed to encode the spatiotemporal motion patterns of actions into 2-D spatial structures. The 2-D spatial structures are further enhanced for recognition by converting the WHDMMs into pseudocolor images. Finally, the three ConvNets are initialized with the models obtained from ImageNet and fine-tuned independently on the color-coded WHDMMs constructed in three orthogonal planes. The proposed algorithm was evaluated on the MSRAction3D, MSRAction3DExt, UTKinect-Action, and MSRDailyActivity3D datasets using cross-subject protocols. In addition, the method was evaluated on the large dataset constructed from the above datasets. The proposed method achieved 2–9% better results on most of the individual datasets. Furthermore, the proposed method maintained its performance on the large dataset, whereas the performance of existing methods decreased with the increased number of actions.

Journal ArticleDOI
TL;DR: The authors used detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.3125° horizontal resolution, to understand the factors controlling surface ozone in the Southeast US.
Abstract: . Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.

Journal ArticleDOI
TL;DR: In this paper, an in-situ synthesized Prussian blue (PB) composite was used as a high-performance SIB cathode, and the synergistic effects of the structure and morphology results in the PB@C composite achieving an unprecedented rate capability and outstanding cycling stability.
Abstract: Rechargeable sodium ion batteries (SIBs) are surfacing as promising candidates for applications in large-scale energy-storage systems. Prussian blue (PB) and its analogues (PBAs) have been considered as potential cathodes because of their rigid open framework and low-cost synthesis. Nevertheless, PBAs suffer from inferior rate capability and poor cycling stability resulting from the low electronic conductivity and deficiencies in the PBAs framework. Herein, to understand the vacancy-impacted sodium storage and Na-insertion reaction kinetics, we report on an in-situ synthesized PB@C composite as a high-performance SIB cathode. Perfectly shaped, nanosized PB cubes were grown directly on carbon chains, assuring fast charge transfer and Na-ion diffusion. The existence of [Fe(CN)6] vacancies in the PB crystal is found to greatly degrade the electrochemical activity of the FeLS(C) redox couple via first-principles computation. Superior reaction kinetics are demonstrated for the redox reactions of the FeHS(N) couple, which rely on the partial insertion of Na ions to enhance the electron conduction. The synergistic effects of the structure and morphology results in the PB@C composite achieving an unprecedented rate capability and outstanding cycling stability (77.5 mAh g−1 at 90 C, 90 mAh g−1 after 2000 cycles at 20 C with 90% capacity retention).

Journal ArticleDOI
TL;DR: The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise, however, many human pressures threaten mangrove extent, resulting in a continuing decline in their extent throughout the tropics.
Abstract: Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.