scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe pore water and sediment measurements of iron (Fe), manganese (Mn), vanadium (V), uranium (U), rhenium (Re), and molybdenum (Mo) along a transect off Washington State (USA).

306 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the mixing, spreading, and descent of the Mediterranean outflow in the 1988 Gulf of Cadiz Expedition and found that the θ-S properties and the thickness and width of the outflow were similar to that seen in earlier surveys.
Abstract: Hydrographic and current profiler data taken during the 1988 Gulf of Cadiz Expedition have been analyzed to diagnose the mixing, spreading, and descent of the Mediterranean outflow. The θ–S properties and the thickness and width of the outflow were similar to that seen in earlier surveys. The transport of pure Mediterranean Water (i.e., water with S ≥ 38.4 psu) was estimated to be about 0.4 × 106 m3 s−1, which is lower than historical estimates—most of which were indirect—but comparable to other recent estimates made from direct velocity observations. The outflow transport estimated at the west end of the Strait of Gibraltar was about 0.7 × 106 m3 s−1 of mixed water, and the transport increased to about 1.9 × 106 m3 s−1 within the eastern Gulf of Cadiz. This increase in transport occurred by entrainment of fresher North Atlantic Central Water, and the salinity anomaly of the outflow was consequently reduced. The velocity-weighted salinity decreased to 36.7 psu within 60 km of the strait and decre...

306 citations

Journal ArticleDOI
TL;DR: In this paper, a simple theory is presented to account for the difference between the temperature at the ocean-air interface and that of the water at a depth of about one meter, except in very light winds and intense solar radiation the mean temperature difference ΔT is expected to be of the formwhere q is the sum of the sensible, latent, and long-wave radiative heat flux from ocean to atmosphere and τ/ρw is the kinematic stress.
Abstract: A simple theory is presented to account for the difference between the temperature at the ocean-air interface and that of the water at a depth of about one meter. Except in very light winds and intense solar radiation the mean temperature difference ΔT is expected to be of the formwhere q is the sum of the sensible, latent, and long-wave radiative heat flux from ocean to atmosphere and τ/ρw is the kinematic stress. No data are available to test this prediction. The influence of slicks and solar insolation on interface temperature is also briefly discussed.

305 citations

Journal ArticleDOI
TL;DR: Characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dSR sequences from marine sediments in Aarhus Bay and Kysing Fj
Abstract: The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

305 citations

Journal ArticleDOI
TL;DR: In this paper, a new mechanistic model based on surface water turbulence was proposed to predict gas exchange for a range of aquatic and marine processes, showing that the gas transfer rate varies linearly with the turbulent dissipation rate to the 1/4 power.
Abstract: [1] Air-water gas transfer influences CO 2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the 1/4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

305 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612