scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two atmospheric general circulation models, the ECHAM-4 and the GISS II models, were used to analyze the interannual variability of δ18O in precipitation over the tropical Americas.
Abstract: [1] We use two atmospheric general circulation models (AGCMs), the ECHAM-4 and the GISS II models, to analyze the interannual variability of δ18O in precipitation over the tropical Americas. Several different simulations with isotopic tracers forced with observed global sea surface temperatures (SST) between 1950 and 1998 reveal the influence of varying temperature, precipitation amount, and moisture source contributions on the predicted δ18O distribution. Observational evidence from climatic (NCEP-NCAR) and sparse stable isotope (IAEA-GNIP) data is used to evaluate model performance. The models capture the essential features of surface climate over the tropical Americas in terms of both their spatial and temporal characteristics. Using a low-resolution model (GISS II), adjusted to provide a more realistic Andean topography, or a higher-resolution model (ECHAM-4 T106) leads to an improved δ18O distribution over the tropical Americas with an altitude effect comparable to observations. Water vapor transport and gradual rainout and increasingly depleted composition of water vapor along its trajectory are correctly simulated in both models, although the ECHAM model appears to underestimate the continentality effect over the Amazon basin. A significant dependence of δ18O on the precipitation amount is apparent in both models, in accordance with observations, while the influence of temperature seems to be less significant in most regions and is accurately reproduced by the ECHAM model only. Over most regions, however, the δ18O signal in precipitation is influenced by a combination of factors, such as precipitation amount, temperature, moisture source variability, and atmospheric circulation changes. Over parts of the tropical Americas, the δ18O signal is therefore also significantly correlated with ENSO because ENSO is an integrator of many factors affecting the δ18O composition of precipitation.

267 citations

Journal ArticleDOI
01 Mar 1985
TL;DR: A record of radionuclide fluxes at a deep-ocean station near Bermuda (32°05′N, 64°15′W) was obtained from analysis of a 3-year collection of sediment-trap samples as discussed by the authors.
Abstract: A record of radionuclide fluxes at a deep-ocean station near Bermuda (32°05′N, 64°15′W) was obtained from analysis of a 3-year collection of sediment-trap samples. The trap was placed at a depth of 3200 m, 1000 m above the sea floor, and the samples were recovered at 2-month intervals. Concentrations of 238U, 234U, 232Th, 230Th, 228Th, 231Pa, 210Po, and 239, 240Pu were measured in the trapped material. Most of the radionuclide activity was found in the <37-gmgm sieved fraction. All of the radionuclide fluxes showed seasonal variations that were in phase with the variations in total sediment flux, which were shown in earlier work to be closely tied to the annual cycle of primary production in the overlying surface water. The seasonal variations are especially noteworthy for 230Th and 231Pa, considering that most of their production occurs in the water column below the euphotic zone. Evidently the seasonal influence is transmitted downward by the varying particle flux so that radionuclide scavenging rates at depth, as well as at the surface, are affected. It is suggested that this could be brought about by seasonal variations in the flux of marine snow or in the rate of fecal-matter production in the deep-water column. Fluxes of 230Th and 231Pa integrated over the annual cycle yielded a trapping efficiency of 105 ± 17% for the PARFLUX sediment trap used in this investigation.

266 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied a two-layer system in which the temperature difference is maintained by heating continuously from below and showed that the potential energy change of the top layer due to the lifting of salt is a constant fraction of that released by the transfer of heat.

266 citations

Journal ArticleDOI
01 Oct 1993
TL;DR: In this article, a transoceanic hydrographic section occupied along roughly Lat. 32°S by the R.R.S. Charles Darwin in November-December 1987 is described on the basis of the water-property and circulation fields at the southern limit of the continentally bounded Indian Ocean.
Abstract: Features of the water-property and circulation fields at the southern limit of the continentally bounded Indian Ocean are described on the basis of a transoceanic hydrographic section occupied along roughly Lat. 32°S by the R.R.S. Charles Darwin in November-December 1987. Primary observations consisted of 106 full-depth CTD/O2 stations with discrete measurements of the concentrations of dissolved silica, phosphate and nitrate. The section lies in the southern part of the South Indian subtropical gyre; water-property features in the upper kilometer indicate that the northward interior flow is predominantly in the eastern half of the ocean there, consistent with the forcing pattern of wind-stress curl. The southward return flow is the Agulhas Current, whose transport at Lats 31–32°S is estimated as 85 × 106 m3 s−1. Circumpolar Deep Water flows northward to fill the greater deep Indian Ocean by means of western-boundary currents in the Crozet Basin, Central Indian Basin and Perth Basin. North Atlantic Deep Water entering directly from the mid-latitude South Atlantic is almost entirely confined to the south-western Indian Ocean (Mozambique Basin, Natal Valley) by the topography of the Madagascar Ridge and Mozambique Channel. Geostrophic transport figures are presented based on a zero-velocity surface constructed along the section from the tracer-property evidence of where deep water was moving northward and where southward. Ekman transport, deduced from shipboard acoustic-Doppler profiler measurements, as well as synoptic and historical wind stress data, is found to be small (about 1 × 106 m3 s−1 northward). Net transport (geostrophic and Ekman) across the section is estimated to be 7 × 106 m3 s−1 southward, which implies a similarly sized Indonesia throughflow. Ambiquity in the geostrophic referencing scheme, and the magnitude of baroclinic eddy noise on the section, suggest this figure in uncertain by at least ±10 × 106mm3 s−1. The calculations obtain a figure for net transport of water below 2000 dbars of 27 × 106 m3 s−1 northward, which specifies an average upwelling speed at the 2-km level north of 30°S of 6.9 × 10−5 cm s−1. This estimate, perhaps uncertain by 20–30%, nonetheless contributes to growing evidence for an anomalously vigorous meridional circulation in the Indian Ocean. The associated calculations of heat and fresh water flux divergences demonstrate that the Indian Ocean thermohaline circulation essentially expresses a conversion of bottom and deep water to mid-depth thermocline, and near-surface water.

265 citations

Journal ArticleDOI
01 Jan 1988
TL;DR: Sediment traps with 0.5 and 1.15 m2 apertures which are capable of collecting 12–25 samples at programmed intervals, typically weekly or bi-monthly, during one continuous semi- to interannual deployment have been developed.
Abstract: Sediment traps with 0.5 and 1.15 m2 apertures which are capable of collecting 12–25 samples at programmed intervals, typically weekly or bi-monthly, during one continuous semi- to interannual deployment have been developed. They utilize a number of new synthetic materials and stable metallic components which ensure reliable, long-lasting performance at any oceanic depth. The key component of the trap is a set of sequentially rotating samplers which is driven by a microprocessor-controlled electronic stepping motor. The electronic power controller controls sampler exchange with a high degree of flexibility and precision, as well as independently recording the executed sampling events. Each sampling bottle is sealed from ambient water during the time samples are stored before recovery. After continuous improvement and modification during 29.5 deployment-years of application in deep ocean experiments since 1982, we are convinced that these sediment traps can provide a relatively large quantity of settling particles in time-series with high experimental reliability.

265 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612