scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, estimates of evaporation (E) over the North Atlantic Ocean by Bunker have been combined with estimates of precipitation (P) by Dorman and Bourke to produce new annual and seasonal maps of E-P and surface density flux.
Abstract: Estimates of evaporation (E) over the North Atlantic Ocean by Bunker have been combined with estimates of precipitation (P) by Dorman and Bourke to produce new annual and seasonal maps of E–P and surface density flux. Although uncertainties about precipitation algorithms and exchange coefficients still presist, it is felt that the high spatial resolution of these data set permits an estimate of E–P that is a significant improvement over previous work. The maps of E–P show considerably more detail than earlier maps, including a previously uncharted minimum with a northeast to southwest trend across the subtropical gyre. The two regions of maximal E–P display a close connection with continental air flows off Africal and North America, suggesting that the relative narrowness of the North Atlantic contributes to its status as a net evaporation basin. The zonally integrated E–P values are combined with river runoff estimates to obtain the meridional flux of freshwater, which can be compared with fluxe...

251 citations

Journal ArticleDOI
TL;DR: In this paper, 12 lower trophic level models of varying complexity are evaluated in two distinct regions (equatorial Pacific and Arabian Sea) and a consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied.
Abstract: [1] Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models’ performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical onedimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.

251 citations

Journal ArticleDOI
TL;DR: Analysis of whistle exchanges from 12 mothercalf pairs shows that signature whistles can remain stable for periods up to at least 12 years, and hypothesize that sex differences in whistle vocalizations may reflect differences in the roles males and females play in the social structure of the community.
Abstract: Mother-calf whistle exchanges were recorded from temporarily captured free-ranging bottlenose dolphins from 1975 to 1989. This is part of a long-term research project studying social structure and behavior of a community of approximately 100 dolphins in waters near Sarasota, Florida. Analysis of whistle exchanges from 12 mothercalf pairs shows that signature whistles can remain stable for periods up to at least 12 years. We looked for effects of vocal learning on the development of the signature whistle by comparing whistles of calves to those of their mothers. Eight female calves produced whistles distinct from those of their mothers, while four male calves produced whistles similar to those of their mothers. Male calves appeared to produce a greater proportion of whistles other than the signature whistle (termed “variants”). We hypothesize that these sex differences in whistle vocalizations may reflect differences in the roles males and females play in the social structure of the community.

251 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders is presented. But the results are limited to the case of a single channel.
Abstract: Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.

251 citations

Journal ArticleDOI
TL;DR: In this paper, Chen et al. developed an unstructured grid, finite volume, three-dimensional (3D) primitive equation coastal ocean model (FVCOM) for the study of coastal ocean and estuarine circulation.
Abstract: [1] An unstructured grid, finite volume, three-dimensional (3-D) primitive equation coastal ocean model (FVCOM) has been developed for the study of coastal ocean and estuarine circulation by Chen et al. (2003a). The finite volume method used in this model combines the advantage of finite element methods for geometric flexibility and finite difference methods for simple discrete computation. Currents, temperature, and salinity are computed using an integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat. Detailed comparisons are presented here of FVCOM simulations with analytical solutions and numerical simulations made with two popular finite difference models (the Princeton Ocean Model and Estuarine and Coastal Ocean Model (ECOM-si)) for the following idealized cases: wind-induced long-surface gravity waves in a circular lake, tidal resonance in rectangular and sector channels, freshwater discharge onto the continental shelf with curved and straight coastlines, and the thermal bottom boundary layer over the slope with steep bottom topography. With a better fit to the curvature of the coastline using unstructured nonoverlapping triangle grid cells, FVCOM provides improved numerical accuracy and correctly captures the physics of tide-, wind-, and buoyancy-induced waves and flows in the coastal ocean. This model is suitable for applications to estuaries, continental shelves, and regional basins that feature complex coastlines and bathymetry.

250 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612