scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the use of loess as a proxy for the concentration and isotopic composition of highly siderophile elements, specifically Os, in the upper continental crust was investigated.
Abstract: [1] We investigate the use of loess as a proxy for the concentration and isotopic composition of highly siderophile elements, specifically Os, in the upper continental crust. The 187Os/188Os, platinum group element, and Re concentrations of 16 loess samples from China, Europe, and South America, previously analyzed for major, trace element, and Sr and Nd isotope composition, reveal subtle differences between loess provinces. Despite those differences, the 187Os/188Os of 1.05 ± 0.23 is surprisingly homogenous. Average 187Os/188Os as well as average Os (31 pg/g) and Ir (22 pg/g) concentrations are similar to the lower limit of previous estimates for average upper continental crust, whereas Ru, Pt, and Pd concentrations are intermediate between previous estimates. We argue that hydrogenous enrichment of Os in riverine sediments led Esser and Turekian [1993] to overestimate the Os concentration of upper continental crust (50 pg/g). On the basis of this argument and correlations with major and trace elements we propose that average platinum group element concentrations of loess (i.e., 31 pg Os/g, 22 pg Ir/g, 210 pg Ru/g, 510 pg Pt/g, 520 pg Pd/g) are a proxy for the upper continental crust. We further suggest that the nonchondritic average Os/Ir of 1.4 reflects the combined effects of radiogenic ingrowth of Os from Re decay over the mean lifetime of the upper continental crust and preferential return of Os to the crust during subduction. Rhenium concentrations scatter significantly, with highest values in loess derived from organic-rich sedimentary rocks. Low median Re concentrations most likely reflect depletion of loess in organic matter, an important sink for Re in the upper continental crust. An average 187Re/188Os of 34.5 was calculated on the basis of the measured 187Os/188Os and Nd model ages. This value corresponds to a Re concentration of 198 pg/g. Correcting measured 187Os/188Os = 1.05 and inferred 186Os/188Os = 0.119871 (from 190Pt/188Os = 0.0176) for the older mean age (2.2 Gyr) of upper continental crust compared to loess (1.6 Gyr) yields average upper crustal 187Os/188Os of 1.40 and 186Os/188Os of 0.119885.

360 citations

Journal ArticleDOI
TL;DR: By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California is characterized and the adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees.
Abstract: Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

360 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution oxygen and hydrogen isotope measurements were made on pore fluids from deep-sea sediments from sites in the North and South Atlantic to provide direct measurements of changes in the isotopic composition of bottom waters during the Last Glacial Maximum (LGM).

358 citations

Journal ArticleDOI
TL;DR: In this article, a food-web model was proposed to estimate the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone.
Abstract: The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

358 citations

Journal ArticleDOI
TL;DR: In this article, a positive feedback loop was proposed to explain the sediment redox condition and S. aZterni$oru production in the tall form of Spurtina alterniflora.
Abstract: Spurtina alterniflora oxidizes the sediments in which it grows through both passive oxygen release and active metabolic processes. Eh is higher in the root zone of this grass than in the sediment below the root zone or in unvegetated sediments. Sediments underlying the tall form of S. aZterniJorcl are more oxidized than those under the short form, and sediment redox condition and S. aZterni$oru production are related through a positive feedback loop. Reducing conditions inhibit aboveground grass production. But also, more productive plants have a greater capacity for sediment oxidation, as shown by the increased Eh in fertilized plots. Waterlogged sediments inhibit plan growth by decreasing passive oxygen release and thereby lowering Eh.

358 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612