scispace - formally typeset
Search or ask a question

Showing papers in "American Journal of Medical Genetics in 2019"


Journal ArticleDOI
TL;DR: The genetic correlations of BF%male and BF%female with AN differed significantly from each other, suggesting that the female preponderance in AN may, in part, be explained by sex‐specific anthropometric and metabolic genetic factors increasing liability to AN.
Abstract: Anorexia nervosa (AN) occurs nine times more often in females than in males. Although environmental factors likely play a role, the reasons for this imbalanced sex ratio remain unresolved. AN displays high genetic correlations with anthropometric and metabolic traits. Given sex differences in body composition, we investigated the possible metabolic underpinnings of female propensity for AN. We conducted sex-specific GWAS in a healthy and medication-free subsample of the UK Biobank (n = 155,961), identifying 77 genome-wide significant loci associated with body fat percentage (BF%) and 174 with fat-free mass (FFM). Partitioned heritability analysis showed an enrichment for central nervous tissue-associated genes for BF%, which was more prominent in females than males. Genetic correlations of BF% and FFM with the largest GWAS of AN by the Psychiatric Genomics Consortium were estimated to explore shared genomics. The genetic correlations of BF%male and BF%female with AN differed significantly from each other (p < .0001, δ = -0.17), suggesting that the female preponderance in AN may, in part, be explained by sex-specific anthropometric and metabolic genetic factors increasing liability to AN.

90 citations


Journal ArticleDOI
TL;DR: A novel hypothesis that genes of the prolactin (PRL)‐pathway may be implicated in the comorbidity of these disorders is proposed, which will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Abstract: Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.

63 citations


Journal ArticleDOI
TL;DR: A systematic review of the literature was conducted on metabolomic studies of patients with MDD or BD through the use of analytical platforms such as in vivo brain imaging, mass spectrometry, and nuclear magnetic resonance, finding 249 metabolites found to be dysregulated.
Abstract: Major depressive disorder (MDD) and bipolar disorder (BD) lack robust biomarkers useful for screening purposes in a clinical setting. A systematic review of the literature was conducted on metabolomic studies of patients with MDD or BD through the use of analytical platforms such as in vivo brain imaging, mass spectrometry, and nuclear magnetic resonance. Our search identified a total of 7,590 articles, of which 266 articles remained for full-text revision. Overall, 249 metabolites were found to be dysregulated with 122 of these metabolites being reported in two or more of the studies included. A list of biomarkers for MDD and BD established from metabolites found to be abnormal, along with the number of studies supporting each metabolite and a comparison of which biological fluids they were reported in, is provided. Metabolic pathways that may be important in the pathophysiology of MDD and BD were identified and predominantly center on glutamatergic metabolism, energy metabolism, and neurotransmission. Using online drug registries, we also illustrate how metabolomics can facilitate the discovery of novel candidate drug targets.

61 citations


Journal ArticleDOI
TL;DR: The first genome‐wide characterization of the sex‐specific genetic architecture of OCD is presented, utilizing the largest set of OCD cases and controls available from the Psychiatric Genomics Consortium, finding a strong genetic correlation between male and female OCD and no evidence for a sex‐dependent liability threshold model.
Abstract: Obsessive-compulsive disorder (OCD) is a highly heritable complex phenotype that demonstrates sex differences in age of onset and clinical presentation, suggesting a possible sex difference in underlying genetic architecture. We present the first genome-wide characterization of the sex-specific genetic architecture of OCD, utilizing the largest set of OCD cases and controls available from the Psychiatric Genomics Consortium. We assessed evidence for several mechanisms that may contribute to sex differences including a sex-dependent liability threshold, the presence of individual sex-specific risk variants on the autosomes and the X chromosome, and sex-specific pleiotropic effects. Furthermore, we tested the hypothesis that genetic heterogeneity between the sexes may obscure associations in a sex-combined genome-wide association study. We observed a strong genetic correlation between male and female OCD and no evidence for a sex-dependent liability threshold model, suggesting that sex-combined analysis does not suffer from widespread loss of power because of genetic heterogeneity between the sexes. While we did not detect any significant sex-specific genome-wide single nucleotide polymorphisms (SNP) associations, we did identify two significant gene-based associations in females: GRID2 and GRP135, which showed no association in males. We observed that the SNPs with sexually differentiated effects showed an enrichment of regulatory variants influencing expression of genes in brain and immune tissues. These findings suggest that future studies with larger sample sizes hold great promise for the identification of sex-specific genetic risk factors for OCD.

52 citations


Journal ArticleDOI
TL;DR: Design and first results of the PsyCourse study are presented, an ongoing transdiagnostic study of the affective‐to‐psychotic continuum that combines longitudinal deep phenotyping and dimensional assessment of psychopathology with an extensive collection of biomaterial.
Abstract: In current diagnostic systems, schizophrenia and bipolar disorder are still conceptualized as distinct categorical entities. Recently, both clinical and genomic evidence have challenged this Kraepelinian dichotomy. There are only few longitudinal studies addressing potential overlaps between these conditions. Here, we present design and first results of the PsyCourse study (N = 891 individuals at baseline), an ongoing transdiagnostic study of the affective-to-psychotic continuum that combines longitudinal deep phenotyping and dimensional assessment of psychopathology with an extensive collection of biomaterial. To provide an initial characterization of the PsyCourse study sample, we compare two broad diagnostic groups defined by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) classification system, that is, predominantly affective (n = 367 individuals) versus predominantly psychotic disorders (n = 524 individuals). Depressive, manic, and psychotic symptoms as well as global functioning over time were contrasted using linear mixed models. Furthermore, we explored the effects of polygenic risk scores for schizophrenia on diagnostic group membership and addressed their effects on nonparticipation in follow-up visits. While phenotypic results confirmed expected differences in current psychotic symptoms and global functioning, both manic and depressive symptoms did not vary between both groups after correction for multiple testing. Polygenic risk scores for schizophrenia significantly explained part of the variability of diagnostic group. The PsyCourse study presents a unique resource to research the complex relationships of psychopathology and biology in severe mental disorders not confined to traditional diagnostic boundaries and is open for collaborations.

49 citations


Journal ArticleDOI
TL;DR: There was suggestive evidence that allele‐specific methylation at the promoter region of FKBP5 may also be associated with treatment response, and the results of this study add to the growing literature demonstrating the role of biological processes such as DNA methylation in response to environmental influences.
Abstract: Differential DNA methylation of the hypothalamic-pituitary-adrenal axis related gene FKBP5 has recently been shown to be associated with varying response to environmental influences and may play a role in how well people respond to psychological treatments. Participants (n = 111) received exposure-based cognitive behavioural therapy (CBT) for agoraphobia with or without panic disorder, or specific phobias. Percentage DNA methylation levels were measured for the promoter region and intron 7 of FKBP5. The association between percentage reduction in clinical severity and change in DNA methylation was tested using linear mixed models. The effect of genotype (rs1360780) was tested by the inclusion of an interaction term. The association between change in DNA methylation and FKBP5 expression was examined. Change in percentage DNA methylation at one CpG site of intron 7 was associated with percentage reduction in severity (β = -4.26, p = 3.90 × 10-4 ), where a decrease in DNA methylation was associated with greater response to therapy. An interaction was detected between rs1360780 and changes in DNA methylation in the promoter region of FKBP5 on treatment outcome (p = .045) but did not survive correction for multiple testing. Changes in DNA methylation were not associated with FKBP5 expression. Decreasing DNA methylation at one CpG site of intron 7 of FKBP5 was strongly associated with decreasing anxiety severity following exposure-based CBT. In addition, there was suggestive evidence that allele-specific methylation at the promoter region may also be associated with treatment response. The results of this study add to the growing literature demonstrating the role of biological processes such as DNA methylation in response to environmental influences.

37 citations


Journal ArticleDOI
TL;DR: The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress‐related psychopathology and point to new avenues for therapeutic intervention.
Abstract: Though a growing body of preclinical and translational research is illuminating a biological basis for resilience to stress, little is known about the genetic basis of psychological resilience in humans. We conducted genome-wide association studies (GWASs) of self-assessed (by questionnaire) and outcome-based (incident mental disorders from predeployment to postdeployment) resilience among European (EUR) ancestry soldiers in the Army study to assess risk and resilience in servicemembers. Self-assessed resilience (N = 11,492) was found to have significant common-variant heritability (h2 = 0.162, se = 0.050, p = 5.37 × 10-4 ), and to be significantly negatively genetically correlated with neuroticism (rg = -0.388, p = .0092). GWAS results from the EUR soldiers revealed a genome-wide significant locus on an intergenic region on Chr 4 upstream from doublecortin-like kinase 2 (DCLK2) (four single nucleotide polymorphisms (SNPs) in LD; top SNP: rs4260523 [p = 5.65 × 10-9 ] is an eQTL in frontal cortex), a member of the doublecortin family of kinases that promote survival and regeneration of injured neurons. A second gene, kelch-like family member 36 (KLHL36) was detected at gene-wise genome-wide significance [p = 1.89 × 10-6 ]. A polygenic risk score derived from the self-assessed resilience GWAS was not significantly associated with outcome-based resilience. In very preliminary results, genome-wide significant association with outcome-based resilience was found for one locus (top SNP: rs12580015 [p = 2.37 × 10-8 ]) on Chr 12 downstream from solute carrier family 15 member 5 (SLC15A5) in subjects (N = 581) exposed to the highest level of deployment stress. The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress-related psychopathology and point to new avenues for therapeutic intervention.

33 citations


Journal ArticleDOI
TL;DR: There is no evidence that the heterogeneity between MDD data sets and between sexes reflects genetic heterogeneity, and larger sample sizes with detailed phenotypic records and genomic data remain the key to overcome heterogeneity inherent in assessment of MDD.
Abstract: Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as high in women as in men. There are many possible sources of heterogeneity in MDD most of which are not measured in a sufficiently comparable way across study samples. Here, we assess genetic heterogeneity based on two fundamental measures, between-cohort and between-sex heterogeneity. First, we used genome-wide association study (GWAS) summary statistics to investigate between-cohort genetic heterogeneity using the 29 research cohorts of the Psychiatric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and found that some of the cohort heterogeneity can be attributed to ascertainment differences (such as recruitment of cases from hospital vs. community sources). Second, we evaluated between-sex genetic heterogeneity using GWAS summary statistics from the PGC, Kaiser Permanente GERA, UK Biobank, and the Danish iPSYCH studies but did not find convincing evidence for genetic differences between the sexes. We conclude that there is no evidence that the heterogeneity between MDD data sets and between sexes reflects genetic heterogeneity. Larger sample sizes with detailed phenotypic records and genomic data remain the key to overcome heterogeneity inherent in assessment of MDD.

33 citations


Journal ArticleDOI
TL;DR: What is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment are discussed, would help to further elucidate the etiology of ADHD.
Abstract: Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.

30 citations


Journal ArticleDOI
TL;DR: Although CNVs were not associated with anxiety/depression in the whole sample, in individuals diagnosed with these disorders, females were more likely to have large CNVs (OR[CI] = 3.75[1.45–9.68], p’=‬.0064), suggesting that large, rare CNVs may show sex‐specific phenotypic effects.
Abstract: Neurodevelopmental problems (NPs) are more common in males, whereas anxiety and depression are more common in females. Rare copy number variants (CNVs) have been implicated in neurodevelopmental disorders. The aim of this study was to characterize the relationship between rare CNVs with NPs, anxiety, and depression in a childhood population sample, as well as to examine sex‐specific effects. We analyzed a sample of N = 12,982 children, of whom 5.3% had narrowly defined NPs (clinically diagnosed), 20.9% had broadly defined NPs (based on validated screening measures, but no diagnosis), and 3.0% had clinically diagnosed anxiety or depression. Rare ( 500 kb), type, and putative relevance to NPs. We tested for association of CNV categories with outcomes and examined sex‐specific effects. Medium deletions (OR[CI] = 1.18[1.05–1.33], p = .0053) and large duplications (OR[CI] = 1.45[1.19–1.75], p = .00017) were associated with broadly defined NPs. Large deletions (OR[CI] = 1.85[1.14–3.01], p = .013) were associated with narrowly defined NPs. There were no significant sex differences in CNV burden in individuals with NPs. Although CNVs were not associated with anxiety/depression in the whole sample, in individuals diagnosed with these disorders, females were more likely to have large CNVs (OR[CI] = 3.75[1.45–9.68], p = .0064). Rare CNVs are associated with both narrowly and broadly defined NPs in a general population sample of children. Our results also suggest that large, rare CNVs may show sex‐specific phenotypic effects.

29 citations


Journal ArticleDOI
TL;DR: Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFβ signaling, indicating potential avenues for disease prevention/treatment.
Abstract: Although the loss of brain laterality is one of the most consistent modalities in schizophrenia (SCZ) and bipolar disorder (BD), its molecular basis remains elusive. Our limited previous studies indicated that epigenetic modifications are key to the asymmetric transcriptomes of brain hemispheres. We used whole-genome expression microarrays to profile postmortem brain samples from subjects with SCZ, psychotic BD [BD[+]] or non-psychotic BD [BD(-)], or matched controls (10/group) and performed whole-genome DNA methylation (DNAM) profiling of the same samples (3-4/group) to identify pathways associated with SCZ or BD[+] and genes/sites susceptible to epigenetic regulation. qRT-PCR and quantitative DNAM analysis were employed to validate findings in larger sample sets (35/group). Gene Set Enrichment Analysis (GSEA) demonstrated that BMP signaling and astrocyte and cerebral cortex development are significantly (FDR q < 0.25) coordinately upregulated in both SCZ and BD[+], and glutamate signaling and TGFβ signaling are significantly coordinately upregulated in SCZ. GSEA also indicated that collagens are downregulated in right versus left brain of controls, but not in SCZ or BD[+] patients. Ingenuity Pathway Analysis predicted that TGFB2 is an upstream regulator of these genes (p = .0012). While lateralized expression of TGFB2 in controls (p = .017) is associated with a corresponding change in DNAM (p ≤ .023), lateralized expression and DNAM of TGFB2 are absent in SCZ or BD. Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFβ signaling, indicating potential avenues for disease prevention/treatment.

Journal ArticleDOI
TL;DR: A novel predictor is presented which could potentially enable studies exploring disease‐modifying intervention in the early stages of the disease, and was the best performing algorithm yielding promising results.
Abstract: Our hypothesis is that machine learning (ML) analysis of whole exome sequencing (WES) data can be used to identify individuals at high risk for schizophrenia (SCZ). This study applies ML to WES data from 2,545 individuals with SCZ and 2,545 unaffected individuals, accessed via the database of genotypes and phenotypes (dbGaP). Single nucleotide variants and small insertions and deletions were annotated by ANNOVAR using the reference genome hg19/GRCh37. Rare (predicted functional) variants with a minor allele frequency ≤1% and genotype quality ≥90 including missense, frameshift, stop gain, stop loss, intronic, and exonic splicing variants were selected. A file containing all cases and controls, the names of genes with variants meeting our criteria, and the number of variants per gene for each individual, was used for ML analysis. The supervised machine-learning algorithm used the patterns of variants observed in the different genes to determine which subset of genes can best predict that an individual is affected. Seventy percent of the data was used to train the algorithm and the remaining 30% of data (n = 1,526) was used to evaluate its efficiency. The supervised ML algorithm, gradient boosted trees with regularization (eXtreme Gradient Boosting implementation) was the best performing algorithm yielding promising results (accuracy: 85.7%, specificity: 86.6%, sensitivity: 84.9%, area under the receiver-operator characteristic curve: 0.95). The top 50 features (genes) of the algorithm were analyzed using bioinformatics resources for new insights about the pathophysiology of SCZ. This manuscript presents a novel predictor which could potentially enable studies exploring disease-modifying intervention in the early stages of the disease.

Journal ArticleDOI
TL;DR: It is found that PRS provided more accurate case/control classification than either linear or nonlinear SVMs, and a tentative explanation why PRS outperforms both multivariate regression and linear kernel SVMs is given.
Abstract: A major controversy in psychiatric genetics is whether nonadditive genetic interaction effects contribute to the risk of highly polygenic disorders. We applied a support vector machines (SVMs) approach, which is capable of building linear and nonlinear models using kernel methods, to classify cases from controls in a large schizophrenia case–control sample of 11,853 subjects (5,554 cases and 6,299 controls) and compared its prediction accuracy with the polygenic risk score (PRS) approach. We also investigated whether SVMs are a suitable approach to detecting nonlinear genetic effects, that is, interactions. We found that PRS provided more accurate case/control classification than either linear or nonlinear SVMs, and give a tentative explanation why PRS outperforms both multivariate regression and linear kernel SVMs. In addition, we observe that nonlinear kernel SVMs showed higher classification accuracy than linear SVMs when a large number of SNPs are entered into the model. We conclude that SVMs are a potential tool for assessing the presence of interactions, prior to searching for them explicitly.

Journal ArticleDOI
TL;DR: The findings give a better perspective of the biological participation of genes associated with SB, which will be important to perform adequate strategies to prevent and treat SB.
Abstract: Multiple large-scale studies such as genome-wide association studies (GWAS) have been performed to identify genetic contributors to suicidal behaviors (SB). We aimed to summarize and analyze the information obtained in SB GWAS, to explore the biological process gene ontology (GO) of genes associated with SB from GWAS, and to determine the possible implications of the genes associated with SB in Kyoto encyclopedias of genes and genomes (KEGG) biological pathways. The articles included in the analysis were obtained from PubMed and Scopus databases. Enrichment analyses were performed in Enrichr to evaluate the KEGG pathways and GO of the genes associated with SB of GWAS. The findings of biological process GO analysis showed 924 GO involved in genes related with SB; of those, the regulation of glucose import in response to insulin stimulus, regulation of protein localization to plasma membrane, positive regulation of endopeptidase activity, heterotypic cell-cell adhesion, regulation of cardiac muscle cell contraction, positive regulation of protein localization to plasma membrane, and positive regulation of protein localization to cell periphery biological process GO showed significant statistical association. Furthermore, we obtained 130 KEGG pathways involved in genes related with SB, which Aldosterone synthesis and secretion, Rap1 signaling pathway and arrhythmogenic right ventricular cardiomyopathy pathways showed a significant statistical association. These findings give a better perspective of the biological participation of genes associated with SB, which will be important to perform adequate strategies to prevent and treat SB.

Journal ArticleDOI
TL;DR: This article highlights key ELSI challenges identified by the ISPG Ethics Committee to be of paramount importance for the ethical translation of psychiatric research into society in three contexts: research settings, clinical settings, and legal proceedings.
Abstract: Psychiatric genetics research is improving our understanding of the biological underpinnings of neurodiversity and mental illness. Using psychiatric genetics in ways that maximize benefits and minimize harms to individuals and society depends largely on how the ethical, legal, and social implications (ELSI) of psychiatric genetics are managed. The International Society of Psychiatric Genetics (ISPG) is the largest international organization dedicated to psychiatric genetics. Given its history, membership, and international reach, we believe the ISPG is well-equipped to contribute to the resolution of these ELSI challenges. As such, we recently created the ISPG Ethics Committee, an interdisciplinary group comprised of psychiatric genetics researchers, clinical geneticists, genetic counselors, mental health professionals, patients, patient advocates, bioethicists, and lawyers. This article highlights key ELSI challenges identified by the ISPG Ethics Committee to be of paramount importance for the ethical translation of psychiatric research into society in three contexts: research settings, clinical settings, and legal proceedings. For each of these arenas, we identify and discuss pressing psychiatric genetics ELSI dilemmas that merit attention and require action. The goal is to increase awareness about psychiatric genetics ELSI issues and encourage dialogue and action among stakeholders.

Journal ArticleDOI
TL;DR: The current global landscape of this genetic counseling specialty and this field's professional development is described and anticipated challenges going forward are highlighted.
Abstract: Psychiatric genetic counseling (PGC) is gradually developing globally, with countries in various stages of development. In some, PGC is established as a service or as part of research projects while in others, it is just emerging as a concept. In this article, we describe the current global landscape of this genetic counseling specialty and this field's professional development. Drawing on information provided by expert representatives from 16 countries, we highlight the following: (a) current understanding of PGC; (b) availability of services for patients; (c) availability of training; (d) healthcare system disparities and cultural differences impacting practice; and (e) anticipated challenges going forward.

Journal ArticleDOI
TL;DR: The findings indicate that ECT cohorts show an increased genetic burden for MD and are consistent with the hypothesis that treatment‐resistant MD patients represent a subgroup with an increase genetic risk for MD.
Abstract: Electroconvulsive therapy (ECT) is the treatment of choice for severe and treatment-resistant depression; disorder severity and unfavorable treatment outcomes are shown to be influenced by an increased genetic burden for major depression (MD). Here, we tested whether ECT assignment and response/nonresponse are associated with an increased genetic burden for major depression (MD) using polygenic risk score (PRS), which summarize the contribution of disease-related common risk variants. Fifty-one psychiatric inpatients suffering from a major depressive episode underwent ECT. MD-PRS were calculated for these inpatients and a separate population-based sample (n = 3,547 healthy; n = 426 self-reported depression) based on summary statistics from the Psychiatric Genomics Consortium MDD-working group (Cases: n = 59,851; Controls: n = 113,154). MD-PRS explained a significant proportion of disease status between ECT patients and healthy controls (p = .022, R-2 = 1.173%); patients showed higher MD-PRS. MD-PRS in population-based depression self-reporters were intermediate between ECT patients and controls (n.s.). Significant associations between MD-PRS and ECT response (50% reduction in Hamilton depression rating scale scores) were not observed. Our findings indicate that ECT cohorts show an increased genetic burden for MD and are consistent with the hypothesis that treatment-resistant MD patients represent a subgroup with an increased genetic risk for MD. Larger samples are needed to better substantiate these findings.

Journal ArticleDOI
TL;DR: An insider's view of researchers' practices regarding RoR and the most contentious issues in psychiatry researchers' decision‐making around RoR are provided, including what are the strongest ethical, scientific, and practical arguments for and against offering RoR from this research.
Abstract: In the middle of growing consensus that genomics researchers should offer to return clinically valid, medically relevant, and medically actionable findings identified in the course of research, psychiatric genetics researchers face new challenges. As they uncover the genetic architecture of psychiatric disorders through genome-wide association studies and integrate whole genome and whole exome sequencing to their research, there is a pressing need for examining these researchers' views regarding the return of results (RoR) and the unique challenges for offering RoR from psychiatric genetics research. Based on qualitative interviews with 39 psychiatric genetics researchers from different countries operating at the forefront of their field, we provide an insider's view of researchers' practices regarding RoR and the most contentious issues in psychiatry researchers' decision-making around RoR, including what are the strongest ethical, scientific, and practical arguments for and against offering RoR from this research. Notably, findings suggest that psychiatric genetics researchers (85%) overwhelmingly favor offering RoR of at least some findings, but only 22% of researchers are returning results. Researchers identified a number of scientific and practical concerns about RoR, and about how to return results in a responsible way to patients diagnosed with a severe psychiatric disorder. Furthermore, findings help highlight areas for further discussion and resolution of conflicts in the practice of RoR in psychiatric genetics research. As the pace of discovery in psychiatric genetics continues to surge, resolution of these uncertainties gains greater urgency to avoid ethical pitfalls and to maximize the positive impact of RoR.

Journal ArticleDOI
TL;DR: A potential sex‐specific link of cADHD with LRP5 and LRP6 gene variants is suggested, which could contribute to the differences in brain maturation alterations in ADHD affected boys and girls, and suggest possible therapy targets.
Abstract: Wnt-signaling is one of the most abundant pathways involved in processes such as cell-proliferation, -polarity, and -differentiation. Altered Wnt-signaling has been linked with several neurodevelopmental disorders including attention-deficit/hyperactivity disorder (ADHD) as well as with cognitive functions, learning and memory. Particularly, lipoprotein receptor-related protein 5 (LRP5) or LRP6 coreceptors, responsible in the activation of the canonical Wnt-pathway, were associated with cognitive alterations in psychiatric disorders. Following the hypothesis of Wnt involvement in ADHD, we investigated the association of genetic variations in LRP5 and LRP6 genes with three independent child and adolescent ADHD (cADHD) samples (total 2,917 participants), followed by a meta-analysis including previously published data. As ADHD is more prevalent in males, we stratified the analysis according to sex and compared the results with the recent ADHD Psychiatric Genomic Consortium (PGC) GWAS. Meta-analyzing our data including previously published cADHD studies, association of LRP5 intronic rs4988319 and rs3736228 (Ala1330Val) with cADHD was observed among girls (OR = 1.80 with 95% CI = 1.07-3.02, p = .0259; and OR = 2.08 with 95% CI = 1.01-4.46, p = .0026, respectively), whereas in boys association between LRP6 rs2302685 (Val1062Ile) and cADHD was present (OR = 1.66, CI = 1.20-2.31, p = .0024). In the PGC-ADHD dataset (using pooled data of cADHD and adults) tendency of associations were observed only among females with OR = 1.09 (1.02-1.17) for LRP5 rs3736228 and OR = 1.18 (1.09-1.25) for LRP6 rs2302685. Together, our findings suggest a potential sex-specific link of cADHD with LRP5 and LRP6 gene variants, which could contribute to the differences in brain maturation alterations in ADHD affected boys and girls, and suggest possible therapy targets.

Journal ArticleDOI
TL;DR: This comprehensive study provides further support that DNA methylation alterations influence the risk for BD and suicide and identifies an association with several pathways including axonal guidance signaling, calcium signaling, β‐adrenergic signaling, and opioid signaling.
Abstract: The addition of a methyl group to, typically, a cytosine-guanine dinucleotide (CpG) creates distinct DNA methylation patterns across the genome that can regulate gene expression. Aberrant DNA methylation of CpG sites has been associated with many psychiatric disorders including bipolar disorder (BD) and suicide. Using the SureSelectXT system, Methyl-Seq, we investigated the DNA methylation status of CpG sites throughout the genome in 50 BD individuals (23 subjects who died by suicide and 27 subjects who died from other causes) and 31 nonpsychiatric controls. We identified differentially methylated regions (DMRs) from three analyses: (a) BD subjects compared to nonpsychiatric controls (BD-NC), (b) BD subjects who died by suicide compared to nonpsychiatric controls (BDS-NC), and (c) BDS subjects compared to BD subjects who died from other causes (BDS-BDNS). One DMR from the BDS-NC analysis, located in ARHGEF38, was significantly hypomethylated (23.4%) in BDS subjects. This finding remained significant after multiple testing (PBootstrapped = 9.0 × 10-3 ), was validated using pyrosequencing, and was more significant in males. A secondary analysis utilized Ingenuity Pathway Analysis to identify enrichment in nominally significant DMRs. This identified an association with several pathways including axonal guidance signaling, calcium signaling, β-adrenergic signaling, and opioid signaling. Our comprehensive study provides further support that DNA methylation alterations influence the risk for BD and suicide. However, further investigation is required to confirm these associations and identify their functional consequences.

Journal ArticleDOI
TL;DR: This is the oldest known patient with MBOAT7‐related intellectual disability, whose unique features compared with previously described individuals include overgrowth with macrocephaly, metrorrhagia, ophthalmological abnormalities, basal ganglia hyperintensities, unspecified anxiety disorder, and ADHD; combined type; and hyperphagia with the absence of appendicular hypertonia and cortical atrophy.
Abstract: MBOAT7 gene pathogenic variants are a newly discovered and rare cause for intellectual disability, autism spectrum disorder (ASD), seizures, truncal hypotonia, appendicular hypertonia, and below average head sizes (ranging from -1 to -3 standard deviations). There have been only 16 individuals previously reported who have MBOAT7-related intellectual disability, all of whom were younger than 10 years old and from consanguineous relationships. Thus, there is a lack of phenotypic information for adolescent and adult individuals with this disorder. Medical genetics and psychiatric evaluations in a 14-year-old female patient with a history of global developmental delay, intellectual disability, overgrowth with macrocephaly, metrorrhagia, seizures, basal ganglia hyperintensities, nystagmus, strabismus with amblyopia, ASD, anxiety, attention deficit hyperactivity disorder (ADHD), aggressive outbursts, and hyperphagia included a karyotype, methylation polymerase chain reaction for Prader-Willi/Angelman syndrome, chromosome microarray, and whole exome sequencing (WES), ADOS2, and ADI-R. WES identified a homozygous, likely pathogenic variant in the MBOAT7 gene (c.855-2A>G). This is the oldest known patient with MBOAT7-related intellectual disability, whose unique features compared with previously described individuals include overgrowth with macrocephaly, metrorrhagia, ophthalmological abnormalities, basal ganglia hyperintensities, unspecified anxiety disorder, and ADHD; combined type; and hyperphagia with the absence of appendicular hypertonia and cortical atrophy. More individuals need to be identified in order to delineate the full clinical spectrum of this disorder.

Journal ArticleDOI
TL;DR: To identify Huntington's disease patients with extreme symbol digit modality test (SDMT) scores, the language‐independent SDMT was used to identify patients performing very well or very poorly relative to their CAG and age cohort.
Abstract: Studying individuals with extreme phenotypes could facilitate the understanding of disease modification by genetic or environmental factors. Our aim was to identify Huntington's disease (HD) patients with extreme symbol digit modality test (SDMT) scores. We first examined in HD the contribution of cognitive measures of the Unified Huntington's Disease Rating Scale (UHDRS) in predicting clinical endpoints. The language-independent SDMT was used to identify patients performing very well or very poorly relative to their CAG and age cohort. We used data from REGISTRY and COHORT observational study participants (5,603 HD participants with CAG repeats above 39 with 13,868 visits) and of 1,006 healthy volunteers (with 2,241 visits), included to identify natural aging and education effects on cognitive measures. Separate Cox proportional hazards models with CAG, age at study entry, education, sex, UHDRS total motor score and cognitive (SDMT, verbal fluency, Stroop tests) scores as covariates were used to predict clinical endpoints. Quantile regression for longitudinal language-independent SDMT data was used for boundary (2.5% and 97.5% quantiles) estimation and extreme score analyses stratified by age, education, and CAG repeat length. Ten percent of HD participants had an extreme SDMT phenotype for at least one visit. In contrast, only about 3% of participants were consistent SDMT extremes at two or more visits. The thresholds for the one-visit and two-visit extremes can be used to classify existing and new individuals. The identification of these phenotype extremes can be useful in the search for disease modifiers.

Journal ArticleDOI
TL;DR: It is concluded that polymorphisms of two dopamine genes are linked to reductions in ELE independently of their association with ADHD.
Abstract: ADHD is associated with an elevated risk of mortality and reduced estimated life expectancy (ELE) by adulthood. Reduced life expectancy is substantially related to the trait of behavioral disinhibition; a correlate of both ADHD and of several dopamine genes related to dopamine signaling and metabolism. We therefore hypothesized that several ADHD risk genes related to dopamine might also be predictive of reduced ELE. Using a longitudinal study of 131 hyperactive children and 71 control cases followed to young adulthood, we examined whether several polymorphisms involving DRD4, DAT1, and DBH were related to ELE. The homozygous 9/9 allele of DAT1 and the heterozygous allele of DBH TaqI were associated with 5- and 2-year reductions, respectively, in total ELE. They did not operate on ELE through any relationships to ADHD specifically or behavioral disinhibition more generally. Instead, they showed links to alcohol use (DBH), reduced education, smoking, and reduced exercise (DAT1) employed in the computation of ELE. We conclude that polymorphisms of two dopamine genes are linked to reductions in ELE independently of their association with ADHD.

Journal ArticleDOI
TL;DR: A series of ethical dilemmas associated with susceptibility genetic testing for the two most common late‐onset neurodegenerative diseases, Alzheimer's and Parkinson's disease, including testing in asymptomatic individuals are reviewed and discussed.
Abstract: Genome-wide association studies have revolutionized our understanding of the genetic architecture of complex traits and diseases over the last decade. This knowledge is enabling clinicians, researchers, and direct-to-consumer genetics companies to conduct disease susceptibility testing based on powerful methods such as polygenic risk scoring. However, these technologies raise a set of complex ethical, legal, social, and policy considerations. Here we review and discuss a series of ethical dilemmas associated with susceptibility genetic testing for the two most common late-onset neurodegenerative diseases, Alzheimer's and Parkinson's disease, including testing in asymptomatic individuals. Among others, these include informed consent, disclosure of results and unexpected findings, mandatory screening, privacy and confidentiality, and stigma and genetic discrimination. Importantly, appropriate counseling is a deciding factor for the ethical soundness of genetic testing, which poses a challenge for the regulation of these tests and the training of healthcare professionals. As genetic knowledge about these diseases continues growing and genetic testing becomes more widespread, it is increasingly important to raise awareness among researchers, medical practitioners, genetic counselors, and decision makers about the ethical, legal, and social issues associated with genetic testing for polygenic diseases.

Journal ArticleDOI
TL;DR: It is suggested that measuring ceruloplasmin levels may be useful when investigating patients with movement disorders or rare cases of unexplained high ferritin, and contributes to better genetic counseling of heterozygotes for CP gene variants.
Abstract: Aceruloplasminemia is a rare form of brain iron overload of autosomal recessive inheritance that results from mutations in the CP gene, encoding the iron oxidase ceruloplasmin. Homozygous aceruloplasminemia causes progressive neurodegenerative disease, anemia, and diabetes, and is usually diagnosed late in life upon investigation of anemia, high ferritin, or movement disorders, but its heterozygous state is less characterized and believed to be silent. Here we report two heterozygotes for new mutations causing aceruloplasminemia from whom peripheral blood samples were collected for complete blood counts, iron studies, and genotyping by automated sequencing. We then performed a systematic review of preview reports of heterozygotes with data on genotype and clinical findings. Heterozygosity for aceruloplasminemia invariably causes reduced ceruloplasmin levels, and similarly to previews reports in the literature, our cases did not present with anemia. Mild hyperferritinemia was found only in two reports. Nevertheless, 5 out of 11 variants have been associated with significant neurological symptoms despite the presence of one wild-type alelle. This review contributes to better genetic counseling of heterozygotes for CP gene variants and supports that measuring ceruloplasmin levels may be useful when investigating patients with movement disorders or rare cases of unexplained high ferritin.

Journal ArticleDOI
TL;DR: The importance of a crosscutting research orientation in this field based on multidisciplinary methodologies which can ensure that efforts to translate and apply global psychiatric genomics in public policy and clinical practice are ethically grounded strategies, respectful of different cultures and contexts is explored.
Abstract: Psychiatric genomics has the potential to radically improve the prevention and early intervention of serious mental and neurodevelopmental disorders worldwide. However, little work has been done on the ethics of psychiatric genomics—an oversight that could result in poor local uptake, reduced practical/clinical application, and ethical violations in this rapidly developing area of scientific research. As part of the Global Project of the Stanley Center for Psychiatric Research, the Global Initiative in Neuropsychiatric GenEthics (NeuroGenE) based at the University of Oxford aims to embed ethical inquiry within scientific investigation and engage with fundamental ethical questions around a psychiatric genomics approach to mental and neurodevelopmental disorder. This position paper sets out the core aims of the NeuroGenE research programme and explores the importance of a crosscutting research orientation in this field based on multidisciplinary methodologies which can ensure that efforts to translate and apply global psychiatric genomics in public policy and clinical practice are ethically grounded strategies, respectful of different cultures and contexts.

Journal ArticleDOI
TL;DR: Through pathway analysis, it is found that these sex‐independent biomarkers have substantially different biological roles than the sex‐dependent biomarkers, and that some of these pathways are ubiquitously dysregulated in both postmortem brain and blood.
Abstract: Autism spectrum disorder (ASD) is a markedly heterogeneous condition with a varied phenotypic presentation. Its high concordance among siblings, as well as its clear association with specific genetic disorders, both point to a strong genetic etiology. However, the molecular basis of ASD is still poorly understood, although recent studies point to the existence of sex-specific ASD pathophysiologies and biomarkers. Despite this, little is known about how exactly sex influences the gene expression signatures of ASD probands. In an effort to identify sex-dependent biomarkers and characterize their function, we present an analysis of a single paired-end postmortem brain RNA-Seq data set and a meta-analysis of six blood-based microarray data sets. Here, we identify several genes with sex-dependent dysregulation, and many more with sex-independent dysregulation. Moreover, through pathway analysis, we find that these sex-independent biomarkers have substantially different biological roles than the sex-dependent biomarkers, and that some of these pathways are ubiquitously dysregulated in both postmortem brain and blood. We conclude by synthesizing the discovered biomarker profiles with the extant literature, by highlighting the advantage of studying sex-specific dysregulation directly, and by making a call for new transcriptomic data that comprise large female cohorts.

Journal ArticleDOI
TL;DR: To maximize the clinical and social benefits of PRB-based technologies, educational campaigns should address mental health and PRB stigma, and lawmakers should carefully consider expanding legislation that prohibits PRB‐based discrimination.
Abstract: Recent studies have identified genomic and nongenomic psychiatric risk biomarkers (PRBs; e.g., genomic variants, blood analytes, gray matter volume). PRBs may soon become a powerful tool for improving psychiatric care and prevention. PRB research and its translation to clinical care, however, may prove to be a double-edged sword. Mental health stigma and discrimination are already widespread, and data caution that biological explanations of psychiatric disorders can exacerbate these stigmatizing attitudes, increasing the desire for social distance and heightening the perceived dangerousness of the patient. As a reaction to the Human Genome Project and historical concerns about eugenics, the international community mobilized to establish legislation to prevent genomic discrimination. But in most countries, these laws are limited to few contexts (e.g., employment, health insurance), and very few countries protect against discrimination based on nongenomic risk biomarkers. Like genomic PRBs, nongenomic PRBs provide information regarding risk for stigmatized psychiatric disorders and have similar-and in some cases greater-predictive value. Numerous large-scale neuroscience and neurogenomics projects are advancing the identification and translation of PRBs. The prospect of PRB-based stigma however, threatens to undermine the potential benefits of this research. Unbridaled by nonexistent or limited PRB anti-discrimination protections, the threat of PRB-based stigma and discrimination may lead many to forego PRB testing, even if shown to have clinical utility. To maximize the clinical and social benefits of PRB-based technologies, educational campaigns should address mental health and PRB stigma, and lawmakers should carefully consider expanding legislation that prohibits PRB-based discrimination.

Journal ArticleDOI
TL;DR: Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate‐methionine pathway enzymes might assume a paramount part in the pathophysiology of autism.
Abstract: BACKGROUND Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate-methionine pathway enzymes might assume a paramount part in the pathophysiology of autism. Methylene tetrahydrofolate reductase (MTHFR) is a basic catalyst for this pathway, also MTHFR gene C677T variant accounted as a risk factor of autism. OBJECTIVE The present study aimed to investigate the association of MTHFR gene rs1801133(C677T) variant among Egyptian autistic children. METHODS The study included 78 autistic children, and 80 matched healthy control children. Full clinical and radiological examinations were conducted. MTHFR genetic variant, rs1801133(C677T) was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods followed by direct sequencing technique. RESULTS MTHFR (C677T) allele frequency was found to be higher significantly in ASD cases compared with nonautistic children. Also, we had a higher distribution of combined CT + TT genotypes among autistic patients with consanguinity and family history of psychological disease. In Gastrointestinal tract (GIT) and sleep disorders showed a higher distribution of hetero CT genotype as well as combined CT + TT genotypes. CONCLUSION This study demonstrated a role of MTHFR gene (C667T) variant with the increased risk for ASD.

Journal ArticleDOI
TL;DR: This study colocalized associations from nine DD related GWAS with expression quantitative trait loci derived from brain tissues and identified two eSNPs rs349045 and rs201605, which were found to have supportive evidence of chromatin interactions observed in human hippocampus tissues.
Abstract: Genome-wide association studies (GWAS) of developmental dyslexia (DD) often used European samples and identified only a handful associations with moderate or weak effects. This study aims to identify DD functional variants by integrating the GWAS associations with tissue-specific functional data and test the variants in a Chinese DD study cohort named READ. We colocalized associations from nine DD related GWAS with expression quantitative trait loci (eQTL) derived from brain tissues and identified two eSNPs rs349045 and rs201605. Both eSNPs had supportive evidence of chromatin interactions observed in human hippocampus tissues and their respective target genes ZNF45 and DNAH9 both had lower expression in brain tissues in schizophrenia patients than controls. In contrast, an eSNP rs4234898 previously identified based on eQTL from the lymphoblastic cell lines of dyslexic children had no chromatin interaction with its target gene SLC2A3 in hippocampus tissues and SLC2A3 expressed higher in the schizophrenia patients than controls. We genotyped the three eSNPs in the READ cohort of 372 cases and 354 controls and discovered only weak associations in rs201605 and rs4234898 with three DD symptoms (p < .05). The lack of associations could be due to low power in READ but could also implicate different etiology of DD in Chinese.