scispace - formally typeset
Search or ask a question

Showing papers in "Journal of The American Society of Nephrology in 2015"


Journal ArticleDOI
TL;DR: Experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression.
Abstract: The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.

485 citations


Journal ArticleDOI
TL;DR: The study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available.
Abstract: Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of ESRD in the first two decades of life. Effective treatment is lacking. First insights into disease mechanisms came from identification of single-gene causes of SRNS. However, the frequency of single-gene causation and its age distribution in large cohorts are unknown. We performed exon sequencing of NPHS2 and WT1 for 1783 unrelated, international families with SRNS. We then examined all patients by microfluidic multiplex PCR and next-generation sequencing for all 27 genes known to cause SRNS if mutated. We detected a single-gene cause in 29.5% (526 of 1783) of families with SRNS that manifested before 25 years of age. The fraction of families in whom a single-gene cause was identified inversely correlated with age of onset. Within clinically relevant age groups, the fraction of families with detection of the single-gene cause was as follows: onset in the first 3 months of life (69.4%), between 4 and 12 months old (49.7%), between 1 and 6 years old (25.3%), between 7 and 12 years old (17.8%), and between 13 and 18 years old (10.8%). For PLCE1, specific mutations correlated with age of onset. Notably, 1% of individuals carried mutations in genes that function within the coenzyme Q10 biosynthesis pathway, suggesting that SRNS may be treatable in these individuals. Our study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available.

480 citations


Journal ArticleDOI
TL;DR: The main product of this work is an extensive database of gene expression along the nephron provided as a publicly accessible webpage (https://helixweb.nih.gov/ESBL/Database/NephronRNAseq/index.html), which is illustrated the use of the data by profiling transcription factor expressionAlong the renal tubule and mapping metabolic pathways.
Abstract: The function of each renal tubule segment depends on the genes expressed therein. High-throughput methods used for global profiling of gene expression in unique cell types have shown low sensitivity and high false positivity, thereby limiting the usefulness of these methods in transcriptomic research. However, deep sequencing of RNA species (RNA-seq) achieves highly sensitive and quantitative transcriptomic profiling by sequencing RNAs in a massive, parallel manner. Here, we used RNA-seq coupled with classic renal tubule microdissection to comprehensively profile gene expression in each of 14 renal tubule segments from the proximal tubule through the inner medullary collecting duct of rat kidneys. Polyadenylated mRNAs were captured by oligo-dT primers and processed into adapter–ligated cDNA libraries that were sequenced using an Illumina platform. Transcriptomes were identified to a median depth of 8261 genes in microdissected renal tubule samples (105 replicates in total) and glomeruli (5 replicates). Manual microdissection allowed a high degree of sample purity, which was evidenced by the observed distributions of well established cell–specific markers. The main product of this work is an extensive database of gene expression along the nephron provided as a publicly accessible webpage (https://helixweb.nih.gov/ESBL/Database/NephronRNAseq/index.html). The data also provide genome-wide maps of alternative exon usage and polyadenylation sites in the kidney. We illustrate the use of the data by profiling transcription factor expression along the renal tubule and mapping metabolic pathways.

446 citations


Journal ArticleDOI
TL;DR: A longitudinal mixed regression model to predict eGFR decline showed that log2HtTKV and age significantly interacted with time in typical patients, but not in atypical patients.
Abstract: The rate of renal disease progression varies widely among patients with autosomal dominant polycystic kidney disease (ADPKD), necessitating optimal patient selection for enrollment into clinical trials. Patients from the Mayo Clinic Translational PKD Center with ADPKD (n=590) with computed tomography/magnetic resonance images and three or more eGFR measurements over ≥6 months were classified radiologically as typical (n=538) or atypical (n=52). Total kidney volume (TKV) was measured using stereology (TKVs) and ellipsoid equation (TKVe). Typical patients were randomly partitioned into development and internal validation sets and subclassified according to height-adjusted TKV (HtTKV) ranges for age (1A–1E, in increasing order). Consortium for Radiologic Imaging Study of PKD (CRISP) participants (n=173) were used for external validation. TKVe correlated strongly with TKVs, without systematic underestimation or overestimation. A longitudinal mixed regression model to predict eGFR decline showed that log2HtTKV and age significantly interacted with time in typical patients, but not in atypical patients. When 1A–1E classifications were used instead of log2HtTKV, eGFR slopes were significantly different among subclasses and, except for 1A, different from those in healthy kidney donors. The equation derived from the development set predicted eGFR in both validation sets. The frequency of ESRD at 10 years increased from subclass 1A (2.4%) to 1E (66.9%) in the Mayo cohort and from 1C (2.2%) to 1E (22.3%) in the younger CRISP cohort. Class and subclass designations were stable. An easily applied classification of ADPKD based on HtTKV and age should optimize patient selection for enrollment into clinical trials and for treatment when one becomes available.

402 citations


Journal ArticleDOI
TL;DR: It is concluded that short- and long-term risk of death or RRT is greatest when patients meet both the serum creatinine level and urine output criteria for AKI and when these abnormalities persist.
Abstract: Severity of AKI is determined by the magnitude of increase in serum creatinine level or decrease in urine output. However, patients manifesting both oliguria and azotemia and those in which these impairments are persistent are more likely to have worse disease. Thus, we investigated the relationship of AKI severity and duration across creatinine and urine output domains with the risk for RRT and likelihood of renal recovery and survival using a large, academic medical center database of critically ill patients. We analyzed electronic records from 32,045 patients treated between 2000 and 2008, of which 23,866 (74.5%) developed AKI. We classified patients by levels of serum creatinine and/or urine output according to Kidney Disease Improving Global Outcomes staging criteria for AKI. In-hospital mortality and RRT rates increased from 4.3% and 0%, respectively, for no AKI to 51.1% and 55.3%, respectively, when serum creatinine level and urine output both indicated stage 3 AKI. Both short- and long-term outcomes were worse when patients had any stage of AKI defined by both criteria. Duration of AKI was also a significant predictor of long-term outcomes irrespective of severity. We conclude that short- and long-term risk of death or RRT is greatest when patients meet both the serum creatinine level and urine output criteria for AKI and when these abnormalities persist.

377 citations


Journal ArticleDOI
TL;DR: The inverse association between eGFR and specific causes of death, including specific types of cardiovascular disease, infection, and other causes, in this cohort of Alberta, Canada who died between 2002 and 2009 is found.
Abstract: Information on common causes of death in people with CKD is limited. We hypothesized that, as eGFR declines, cardiovascular mortality and mortality from infection account for increasing proportions of deaths. We calculated eGFR using the CKD Epidemiology Collaboration equation for residents of Alberta, Canada who died between 2002 and 2009. We used multinomial logistic regression to estimate unadjusted and age- and sex-adjusted differences in the proportions of deaths from each cause according to the severity of CKD. Cause of death was classified as cardiovascular, infection, cancer, other, or not reported using International Classification of Diseases codes. Among 81,064 deaths, the most common cause was cancer (31.9%) followed by cardiovascular disease (30.2%). The most common cause of death for those with eGFR≥60 ml/min per 1.73 m(2) and no proteinuria was cancer (38.1%); the most common cause of death for those with eGFR<60 ml/min per 1.73 m(2) was cardiovascular disease. The unadjusted proportion of patients who died from cardiovascular disease increased as eGFR decreased (20.7%, 36.8%, 41.2%, and 43.7% of patients with eGFR≥60 [with proteinuria], 45-59.9, 30-44.9, and 15-29.9 ml/min per 1.73 m(2), respectively). The proportions of deaths from heart failure and valvular disease specifically increased with declining eGFR along with the proportions of deaths from infectious and other causes, whereas the proportion of deaths from cancer decreased. In conclusion, we found an inverse association between eGFR and specific causes of death, including specific types of cardiovascular disease, infection, and other causes, in this cohort.

371 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Abstract: Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.

341 citations


Journal ArticleDOI
TL;DR: Overall and within subgroups of patients with predialysis systolic BP<120 or 120-159 mmHg, an absolute nadir systolics BP<90mmHg was most potently associated with mortality, and ndir-based definitions best capture the association between intradialytic hypotension and mortality.
Abstract: Intradialytic hypotension is a serious and frequent complication of hemodialysis; however, there is no evidence-based consensus definition of intradialytic hypotension. As a result, coherent evaluation of the effects of intradialytic hypotension is difficult. We analyzed data from 1409 patients in the HEMO Study and 10,392 patients from a single large dialysis organization to investigate the associations of commonly used intradialytic hypotension definitions and mortality. Intradialytic hypotension definitions were selected a priori on the basis of literature review. For each definition, patients were characterized as having intradialytic hypotension if they met the corresponding definition in at least 30% of baseline exposure period treatments or characterized as control otherwise. Overall and within subgroups of patients with predialysis systolic BP<120 or 120-159 mmHg, an absolute nadir systolic BP<90 mmHg was most potently associated with mortality. Within the subgroup of patients with predialysis BP≥160 mmHg, nadir BP<100 mmHg was most potently associated with mortality. Intradialytic hypotension definitions that considered symptoms, interventions, and decreases in BP during dialysis were not associated with outcome, and when added to nadir BP, symptom and intervention criteria did not accentuate associations with mortality. Our results suggest that nadir-based definitions best capture the association between intradialytic hypotension and mortality.

304 citations


Journal ArticleDOI
TL;DR: Findings from the Torino-Cagliari Observational Study suggest a "baseline risk" for adverse pregnancy-related outcomes linked to CKD is suggested.
Abstract: CKD is increasingly prevalent in pregnancy. In the Torino-Cagliari Observational Study (TOCOS), we assessed whether the risk for adverse pregnancy outcomes is associated with CKD by comparing pregnancy outcomes of 504 pregnancies in women with CKD to outcomes of 836 low-risk pregnancies in women without CKD. The presence of hypertension, proteinuria (>1 g/d), systemic disease, and CKD stage (at referral) were assessed at baseline. The following outcomes were studied: cesarean section, preterm delivery, and early preterm delivery; small for gestational age (SGA); need for neonatal intensive care unit (NICU); new onset of hypertension; new onset/doubling of proteinuria; CKD stage shift; "general" combined outcome (preterm delivery, NICU, SGA); and "severe" combined outcome (early preterm delivery, NICU, SGA). The risk for adverse outcomes increased across stages (for stage 1 versus stages 4-5: "general" combined outcome, 34.1% versus 90.0%; "severe" combined outcome, 21.4% versus 80.0%; P<0.001). In women with stage 1 CKD, preterm delivery was associated with baseline hypertension (odds ratio [OR], 3.42; 95% confidence interval [95% CI], 1.87 to 6.21), systemic disease (OR, 3.13; 95% CI, 1.51 to 6.50), and proteinuria (OR, 3.69; 95% CI, 1.63 to 8.36). However, stage 1 CKD remained associated with adverse pregnancy outcomes (general combined outcome) in women without baseline hypertension, proteinuria, or systemic disease (OR, 1.88; 95% CI, 1.27 to 2.79). The risk of intrauterine death did not differ between patients and controls. Findings from this prospective study suggest a "baseline risk" for adverse pregnancy-related outcomes linked to CKD.

260 citations


Journal ArticleDOI
TL;DR: The results indicate HIV-positive, antiretroviral therapy-naïve South-African blacks with two APOL1 risk alleles are at very high risk for developing HIV-associated nephropathy.
Abstract: APOL1 variants are associated with HIV-associated nephropathy and FSGS in African Americans. The prevalence of these variants in African populations with CKD in HIV-1 infection has not been investigated. We determined the role of APOL1 variants in 120 patients with HIV-associated nephropathy and CKD and 108 controls from a South-African black population. Patients with CKD were selected on the basis of histology. Genotypes were successfully determined for APOL1 G1 and G2 variants and 42 single nucleotide polymorphisms, including 18 ancestry informative markers, for 116 patients with CKD (96.7%; 38 patients with HIV-associated nephropathy, 39 patients with HIV-positive CKD, and 39 patients with HIV-negative CKD), and 108 controls (100%). Overall, 79% of patients with HIV-associated nephropathy and 2% of population controls carried two risk alleles. In a recessive model, individuals carrying any combination of two APOL1 risk alleles had 89-fold higher odds (95% confidence interval, 18 to 912; P<0.001) of developing HIV-associated nephropathy compared with HIV-positive controls. Population allele frequencies were 7.3% for G1 and 11.1% for G2. APOL1 risk alleles were not significantly associated with other forms of CKD. These results indicate HIV-positive, antiretroviral therapy-naive South-African blacks with two APOL1 risk alleles are at very high risk for developing HIV-associated nephropathy. Further studies are required to determine the effect of APOL1 risk variants on kidney diseases in other regions of sub-Saharan Africa.

248 citations


Journal ArticleDOI
TL;DR: Assessing circulating anti-PLA2R autoantibodies and proteinuria may help in monitoring disease activity and guiding personalized rituximab therapy in nephrotic patients with primary MN.
Abstract: Rituximab induces nephrotic syndrome (NS) remission in two-thirds of patients with primary membranous nephropathy (MN), even after other treatments have failed. To assess the relationships among treatment effect, circulating nephritogenic anti-phospholipase A2 receptor (anti-PLA2R) autoantibodies and genetic polymorphisms predisposing to antibody production we serially monitored 24-hour proteinuria and antibody titer in patients with primary MN and long-lasting NS consenting to rituximab (375 mg/m 2 ) therapy and genetic analyses. Over a median (range) follow-up of 30.8 (6.0–145.4) months, 84 of 132 rituximabtreated patients achieved complete or partial NS remission (primary end point), and 25 relapsed after remission. Outcomes of patients with or without detectable anti-PLA2R antibodies at baseline were similar. Among the 81 patients with antibodies, lower anti-PLA2R antibody titer at baseline (P=0.001) and full antibody depletion 6 months post-rituximab (hazard ratio [HR], 7.90; 95% confidence interval [95% CI], 2.54 to 24.60; P,0.001) strongly predicted remission. All 25 complete remissions were preceded by complete anti-PLA2R antibody depletion. On average, 50% anti-PLA2R titer reduction preceded equivalent proteinuria reduction by 10 months. Re-emergence of circulating antibodies predicted disease relapse (HR, 6.54; 95% CI, 1.57 to 27.40; P=0.01), whereas initial complete remission protected from the event (HR, 6.63; 95% CI, 2.37 to 18.53; P,0.001). Eighteen patients achieved persistent antibody depletion and complete remission and never relapsed. Outcome was independent of PLA2R1 and HLA-DQA1 polymorphisms and of previous immunosuppressive treatment. Therefore, assessing circulating antiPLA2R autoantibodies and proteinuria may help in monitoring disease activity and guiding personalized rituximab therapy in nephrotic patients with primary MN.

Journal ArticleDOI
TL;DR: The data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI, and a positive feedback loop involving these genes and inflammatory cytokines that promotes ne croptosis progression.
Abstract: Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis,atypeofprogrammednecrosis,hasaroleincisplatin-inducedAKI.Wefoundthatinhibitionof any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination ofcytokines(TNF-a,TNF-relatedweakinducerofapoptosis, andIFN-g)thatwereupregulatedinproximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatintreatedmicewaspartiallydiminishedinRIP3-orMLKL-deficientmice,suggestingapositivefeedbackloop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI.

Journal ArticleDOI
TL;DR: It is suggested that subclinical TCMR and subclinical ABMR have distinct effects on long-term graft loss, and only those who further developed de novo donor-specific antibodies and transplant glomerulopathy showed higher risk of graft loss compared with patients without rejection.
Abstract: Kidney allograft rejection can occur in clinically stable patients, but long-term significance is unknown. We determined whether early recognition of subclinical rejection has long-term consequences for kidney allograft survival in an observational prospective cohort study of 1307 consecutive nonselected patients who underwent ABO-compatible, complement-dependent cytotoxicity-negative crossmatch kidney transplantation in Paris (2000-2010). Participants underwent prospective screening biopsies at 1 year post-transplant, with concurrent evaluations of graft complement deposition and circulating anti-HLA antibodies. The main analysis included 1001 patients. Three distinct groups of patients were identified at the 1-year screening: 727 (73%) patients without rejection, 132 (13%) patients with subclinical T cell-mediated rejection (TCMR), and 142 (14%) patients with subclinical antibody-mediated rejection (ABMR). Patients with subclinical ABMR had the poorest graft survival at 8 years post-transplant (56%) compared with subclinical TCMR (88%) and nonrejection (90%) groups (P<0.001). In a multivariate Cox model, subclinical ABMR at 1 year was independently associated with a 3.5-fold increase in graft loss (95% confidence interval, 2.1 to 5.7) along with eGFR and proteinuria (P<0.001). Subclinical ABMR was associated with more rapid progression to transplant glomerulopathy. Of patients with subclinical TCMR at 1 year, only those who further developed de novo donor-specific antibodies and transplant glomerulopathy showed higher risk of graft loss compared with patients without rejection. Our findings suggest that subclinical TCMR and subclinical ABMR have distinct effects on long-term graft loss. Subclinical ABMR detected at the 1-year screening biopsy carries a prognostic value independent of initial donor-specific antibody status, previous immunologic events, current eGFR, and proteinuria.

Journal ArticleDOI
TL;DR: Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor-23 may contribute to cardiac remodelling in concert with Klotho deficiencies in CKD, phosphotoxicity, and aging.
Abstract: Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency-genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor-23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-β1-, angiotensin II-, or high phosphate-induced fibrosis and abolished TGF-β1- or angiotensin II-induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor-23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging.

Journal ArticleDOI
TL;DR: It is concluded that assessment of the C3d-binding capacity of DSA at the time of AMR diagnosis allows for identification of patients at risk for allograft loss.
Abstract: Antibody-mediated rejection (AMR) is a major cause of kidney graft loss, yet assessment of individual risk at diagnosis is impeded by the lack of a reliable prognosis assay. Here, we tested whether the capacity of anti-HLA antibodies to bind complement components allows accurate risk stratification at the time of AMR diagnosis. Among 938 kidney transplant recipients for whom a graft biopsy was performed between 2004 and 2012 at the Lyon University Hospitals, 69 fulfilled the diagnosis criteria for AMR and were enrolled. Sera banked at the time of the biopsy were screened for the presence of donor-specific anti-HLA antibodies (DSAs) and their ability to bind C1q and C3d using flow bead assays. In contrast with C4d graft deposition, the presence of C3d-binding DSA was associated with a higher risk of graft loss ( P P =0.06). The prognostic value of a C3d-binding assay was further confirmed in an independent cohort of 39 patients with AMR ( P =0.04). Patients with C3d-binding antibodies had worse eGFR and higher DSA mean fluorescence intensity. In a multivariate analysis, only eGFR 2 (hazard ratio [HR], 3.56; 95% confidence interval [CI], 1.46 to 8.70; P =0.005) and the presence of circulating C3d-binding DSA (HR, 2.80; 95% CI, 1.12 to 6.95; P =0.03) were independent predictors for allograft loss at AMR diagnosis. We conclude that assessment of the C3d-binding capacity of DSA at the time of AMR diagnosis allows for identification of patients at risk for allograft loss.

Journal ArticleDOI
TL;DR: The results suggest that the decreased level of circulating soluble Klotho in CKD is an important cause of uremic cardiomyopathy independent of FGF23 and phosphate, opening new avenues for treatment of this disease.
Abstract: Cardiac hypertrophy occurs in up to 95% of patients with CKD and increases their risk for cardiovascular death. In the kidney, full-length membranous Klotho forms the coreceptor for fibroblast growth factor 23 (FGF23) to regulate phosphate metabolism. The prevailing view is that the decreased level of Klotho in CKD causes cardiomyopathy through increases in serum FGF23 and/or phosphate levels. However, we reported recently that soluble Klotho protects against cardiac hypertrophy by inhibiting abnormal calcium signaling in the heart. Here, we tested whether this protective effect requires changes in FGF23 and/or phosphate levels. Heterozygous Klotho-deficient CKD mice exhibited aggravated cardiac hypertrophy compared with wild-type CKD mice. Cardiac magnetic resonance imaging studies revealed that Klotho-deficient CKD hearts had worse functional impairment than wild-type CKD hearts. Normalization of serum phosphate and FGF23 levels by dietary phosphate restriction did not abrogate the aggravated cardiac hypertrophy observed in Klotho-deficient CKD mice. Circulating levels of the cleaved soluble ectodomain of Klotho were lower in wild-type CKD mice than in control mice and even lower in Klotho-deficient CKD mice. Intravenous delivery of a transgene encoding soluble Klotho ameliorated cardiac hypertrophy in Klotho-deficient CKD mice. These results suggest that the decreased level of circulating soluble Klotho in CKD is an important cause of uremic cardiomyopathy independent of FGF23 and phosphate, opening new avenues for treatment of this disease.

Journal ArticleDOI
TL;DR: Serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD and has prooxidant and proinflammatory effects in vitro and in cultured human endothelial cells.
Abstract: In CKD, uremic solutes may induce endothelial dysfunction, inflammation, and oxidative stress, leading to increased cardiovascular risk. We investigated whether the uremic solute indole-3 acetic acid (IAA) predicts clinical outcomes in patients with CKD and has prooxidant and proinflammatory effects. We studied 120 patients with CKD. During the median study period of 966 days, 29 patients died and 35 experienced a major cardiovascular event. Kaplan-Meier analysis revealed that mortality and cardiovascular events were significantly higher in the higher IAA group (IAA>3.73 µM) than in the lower IAA group (IAA<3.73 µM). Multivariate Cox regression analysis demonstrated that serum IAA was a significant predictor of mortality and cardiovascular events after adjustments for age and sex; cholesterol, systolic BP, and smoking; C-reactive protein, phosphate, body mass index, and albumin; diastolic BP and history of cardiovascular disease; and uremic toxins p-cresyl sulfate and indoxyl sulfate. Notably, IAA level remained predictive of mortality when adjusted for CKD stage. IAA levels were positively correlated with markers of inflammation and oxidative stress: C-reactive protein and malondialdehyde, respectively. In cultured human endothelial cells, IAA activated an inflammatory nongenomic aryl hydrocarbon receptor (AhR)/p38MAPK/NF-κB pathway that induced the proinflammatory enzyme cyclooxygenase-2. Additionally, IAA increased production of endothelial reactive oxygen species. In conclusion, serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD. In vitro, IAA induces endothelial inflammation and oxidative stress and activates an inflammatory AhR/p38MAPK/NF-κB pathway.

Journal ArticleDOI
TL;DR: A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.
Abstract: Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome-wide association studies identified deletion of complement factor H-related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1-containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.

Journal ArticleDOI
TL;DR: The mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces are considered.
Abstract: Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.

Journal ArticleDOI
TL;DR: The benefit of adding AST-120 to standard therapy in patients with moderate to severe CKD is not supported by these data, and disease progression was more gradual than expected in the trial populations.
Abstract: Reduced GFR in patients with CKD causes systemic accumulation of uremic toxins, which has been correlated with disease progression and increased morbidity. The orally administered spherical carbon adsorbent AST-120 reduces systemic toxin absorption through gastrointestinal sequestration, which may slow disease progression in these patients. The multinational, randomized, double-blind, placebo-controlled Evaluating Prevention of Progression in CKD (EPPIC)-1 and EPPIC-2 trials evaluated the effects of AST-120 on the progression of CKD when added to standard therapy. We randomly assigned 2035 adults with moderate to severe disease (serum creatinine at screening, 2.0–5.0 mg/dl for men and 1.5–5.0 mg/dl for women) to receive either placebo or AST-120 (9 g/d). The primary end point was a composite of dialysis initiation, kidney transplantation, and serum creatinine doubling. Each trial continued until accrual of 291 primary end points. The time to primary end point was similar between the AST-120 and the placebo groups in both trials (EPPIC-1: hazard ratio, 1.03; 95% confidence interval, 0.84 to 1.27; P=0.78) (EPPIC-2: hazard ratio, 0.91; 95% confidence interval, 0.74 to 1.12; P=0.37); a pooled analysis of both trials showed similar results. The estimated median time to primary end points for the placebo groups was 124 weeks for power calculations, but actual times were 189.0 and 170.3 weeks for EPPIC-1 and EPPIC-2, respectively. Thus, disease progression was more gradual than expected in the trial populations. In conclusion, the benefit of adding AST-120 to standard therapy in patients with moderate to severe CKD is not supported by these data.

Journal ArticleDOI
TL;DR: MicroRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.
Abstract: Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell–promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.

Journal ArticleDOI
TL;DR: Uric acid and the GRS were both associated with cardiovascular death and sudden cardiac death, suggesting that high uric acid is causally related to adverse cardiovascular outcomes, especially sudden cardiacdeath.
Abstract: Obesity and diets rich in uric acid-raising components appear to account for the increased prevalence of hyperuricemia in Westernized populations. Prevalence rates of hypertension, diabetes mellitus, CKD, and cardiovascular disease are also increasing. We used Mendelian randomization to examine whether uric acid is an independent and causal cardiovascular risk factor. Serum uric acid was measured in 3315 patients of the Ludwigshafen Risk and Cardiovascular Health Study. We calculated a weighted genetic risk score (GRS) for uric acid concentration based on eight uric acid-regulating single nucleotide polymorphisms. Causal odds ratios and causal hazard ratios (HRs) were calculated using a two-stage regression estimate with the GRS as the instrumental variable to examine associations with cardiometabolic phenotypes (cross-sectional) and mortality (prospectively) by logistic regression and Cox regression, respectively. Our GRS was not consistently associated with any biochemical marker except for uric acid, arguing against pleiotropy. Uric acid was associated with a range of prevalent diseases, including coronary artery disease. Uric acid and the GRS were both associated with cardiovascular death and sudden cardiac death. In a multivariate model adjusted for factors including medication, causal HRs corresponding to each 1-mg/dl increase in genetically predicted uric acid concentration were significant for cardiovascular death (HR, 1.77; 95% confidence interval, 1.12 to 2.81) and sudden cardiac death (HR, 2.41; 95% confidence interval, 1.16 to 5.00). These results suggest that high uric acid is causally related to adverse cardiovascular outcomes, especially sudden cardiac death.

Journal ArticleDOI
TL;DR: Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.
Abstract: Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.

Journal ArticleDOI
TL;DR: A novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD is suggested and d-glucarate is suggested as a potential therapeutic agent for the amelioration ofDKD.
Abstract: Diabetic kidney disease (DKD) is associated with oxidative stress and mitochondrial injury. Myo-inositol oxygenase (MIOX), a tubular-specific enzyme, modulates redox imbalance and apoptosis in tubular cells in diabetes, but these mechanisms remain unclear. We investigated the role of MIOX in perturbation of mitochondrial quality control, including mitochondrial dynamics and autophagy/mitophagy, under high-glucose (HG) ambience or a diabetic state. HK-2 or LLC-PK1 cells subjected to HG exhibited an upregulation of MIOX accompanied by mitochondrial fragmentation and depolarization, inhibition of autophagy/mitophagy, and altered expression of mitochondrial dynamic and mitophagic proteins. Furthermore, dysfunctional mitochondria accumulated in the cytoplasm, which coincided with increased reactive oxygen species generation, Bax activation, cytochrome C release, and apoptosis. Overexpression of MIOX in LLC-PK1 cells enhanced the effects of HG, whereas MIOX siRNA or d-glucarate, an inhibitor of MIOX, partially reversed these perturbations. Moreover, decreasing the expression of MIOX under HG ambience increased PTEN-induced putative kinase 1 expression and the dependent mitofusin-2-Parkin interaction. In tubules of diabetic mice, increased MIOX expression and mitochondrial fragmentation and defective autophagy were observed. Dietary supplementation of d-glucarate in diabetic mice decreased MIOX expression, attenuated tubular damage, and improved renal functions. Notably, d-glucarate administration also partially attenuated mitochondrial fragmentation, oxidative stress, and apoptosis and restored autophagy/mitophagy in the tubular cells of these mice. These results suggest a novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD and suggest d-glucarate as a potential therapeutic agent for the amelioration of DKD.

Journal ArticleDOI
TL;DR: Overall, in the setting of earlyAKI, FST urine output outperformed biochemical biomarkers for prediction of progressive AKI, need for RRT, and inpatient mortality, although further research is needed.
Abstract: Clinicians have access to limited tools that predict which patients with early AKI will progress to more severe stages. In early AKI, urine output after a furosemide stress test (FST), which involves intravenous administration of furosemide (1.0 or 1.5 mg/kg), can predict the development of stage 3 AKI. We measured several AKI biomarkers in our previously published cohort of 77 patients with early AKI who received an FST and evaluated the ability of FST urine output and biomarkers to predict the development of stage 3 AKI (n=25 [32.5%]), receipt of RRT (n=11 [14.2%]), or inpatient mortality (n=16 [20.7%]). With an area under the curve (AUC)±SEM of 0.87±0.09 (P 0.10 for all). When FST urine output was assessed in patients with increased biomarker levels, the AUC for progression to stage 3 improved to 0.90±0.06 and the AUC for receipt of RRT improved to 0.91±0.08. Overall, in the setting of early AKI, FST urine output outperformed biochemical biomarkers for prediction of progressive AKI, need for RRT, and inpatient mortality. Using a FST in patients with increased biomarker levels improves risk stratification, although further research is needed.

Journal ArticleDOI
TL;DR: Albuminuria may be a valid substitute for ESRD in many circumstances, even taking into account possible other drug-specific effects that may alter renal outcomes, according to a meta-analysis of clinical trials.
Abstract: Albuminuria has been proposed as a surrogate end point in randomized clinical trials of renal disease progression. Most evidence comes from observational analyses showing that treatment-induced short-term changes in albuminuria correlate with risk change for ESRD. However, such studies are prone to selection bias and residual confounding. To minimize this bias, we performed a meta-analysis of clinical trials to correlate the placebo-corrected drug effect on albuminuria and ESRD to more reliably delineate the association between changes in albuminuria and ESRD. MEDLINE and EMBASE were searched for clinical trials reported between 1950 and April 2014. Included trials had a mean follow-up of ≥1000 patient-years, reported ESRD outcomes, and measured albuminuria at baseline and during follow-up. Twenty-one clinical trials involving 78,342 patients and 4183 ESRD events were included. Median time to first albuminuria measurement was 6 months. Fourteen trials tested the effect of renin-angiotensin-aldosterone-system inhibitors and seven trials tested other interventions. We observed variability across trials in the treatment effect on albuminuria (range, -1.3% to -32.1%) and ESRD (range, -55% to +35% risk change). Meta-regression analysis revealed that the placebo-adjusted treatment effect on albuminuria significantly correlated with the treatment effect on ESRD: for each 30% reduction in albuminuria, the risk of ESRD decreased by 23.7% (95% confidence interval, 11.4% to 34.2%; P=0.001). The association was consistent regardless of drug class (P=0.73) or other patient or trial characteristics. These findings suggest albuminuria may be a valid substitute for ESRD in many circumstances, even taking into account possible other drug-specific effects that may alter renal outcomes.

Journal ArticleDOI
TL;DR: Patients with AKI at increased risk for mortality or receipt of RRT over the next 9 months may be identified by measuring TIMP-2 and IGFBP7 early in the setting of critical illness.
Abstract: Tissue inhibitor metalloproteinase-2 (TIMP-2) and IGF-binding protein-7 (IGFBP7) have been validated for risk stratification in AKI. However, the association of urinary TIMP-2 and IGFBP7 with long-term outcomes is unknown. We evaluated the 9-month incidence of a composite end point of all-cause mortality or the need for RRT in a secondary analysis of a prospective observational international study of critically ill adults. Two predefined [TIMP-2]⋅[IGFBP7] cutoffs (0.3 for high sensitivity and 2.0 for high specificity) for the development of AKI were evaluated. Cox proportional hazards models were used to determine risk for the composite end point. Baseline [TIMP-2]⋅[IGFBP7] values were available for 692 subjects, of whom 382 (55.2%) subjects developed stage 1 AKI (defined by Kidney Disease Improving Global Outcomes guidelines) within 72 hours of enrollment and 217 (31.4%) subjects met the composite end point. Univariate analysis showed that [TIMP-2]⋅[IGFBP7]>2.0 was associated with increased risk of the composite end point (hazard ratio [HR], 2.11; 95% confidence interval [95% CI], 1.37 to 3.23; P 0.3 were associated with death or RRT only in subjects who developed AKI (compared with levels≤0.3: HR, 1.44; 95% CI, 1.00 to 2.06 for levels>0.3 to ≤2.0; P=0.05 and HR, 2.16; 95% CI, 1.32 to 3.53 for levels>2.0; P=0.002). In conclusion, [TIMP-2]⋅[IGFBP7] measured early in the setting of critical illness may identify patients with AKI at increased risk for mortality or receipt of RRT over the next 9 months.

Journal ArticleDOI
TL;DR: The data suggest that hemodialysis results in significant brain injury and that improvement in hemodynamic tolerability achieved by using cooled dialysate is effective at abrogating these effects.
Abstract: Hemodialysis is associated with significant circulatory stress that could produce recurrent and cumulative ischemic insults to multiple organs, such as the brain. We aimed to characterize hemodialysis-induced brain injury by longitudinally studying the effects of hemodialysis on brain white matter microstructure and further examine if the use of cooled dialysate could provide protection against hemodialysis-associated brain injury. In total, 73 patients on incident hemodialysis starting within 6 months were randomized to dialyze with a dialysate temperature of either 37°C or 0.5°C below the core body temperature and followed up for 1 year. Brain white matter microstructure was studied by diffusion tensor magnetic resonance imaging at baseline and follow-up (38 patients available for paired analysis). Intradialytic hemodynamic stress was quantified using the extrema points analysis model. Patients on hemodialysis exhibited a pattern of ischemic brain injury (increased fractional anisotropy and reduced radial diffusivity). Cooled dialysate improved hemodynamic tolerability, and changes in brain white matter were associated with hemodynamic instability (higher mean arterial pressure extrema points frequencies were associated with higher fractional anisotropy [peak r=0.443, P<0.03] and lower radial diffusivity [peak r=-0.439, P<0.02]). Patients who dialyzed at 0.5°C below core body temperature exhibited complete protection against white matter changes at 1 year. Our data suggest that hemodialysis results in significant brain injury and that improvement in hemodynamic tolerability achieved by using cooled dialysate is effective at abrogating these effects. This intervention can be delivered without additional cost and is universally applicable.

Journal ArticleDOI
TL;DR: In conclusion, longitudinal ANCA measurements may be useful in patients with renal involvement but is less valuable in Patients with nonrenal disease.
Abstract: The value of measuring ANCA during follow-up to predict a relapse is controversial. On the basis of recently obtained pathophysiologic insights, we postulated that measuring ANCA is useful in patients with renal involvement but is less valuable in patients with nonrenal disease. One hundred sixty-six consecutive patients with ANCA-associated vasculitis, positive for either proteinase 3 (PR3)-ANCA or myeloperoxidase (MPO)-ANCA, were included in our study, followed at regular intervals, and tested for PR3-ANCA and MPO-ANCA. In this cohort, 104 patients had renal involvement (72 with PR3-ANCA, 32 with MPO-ANCA) and 62 patients had nonrenal disease (36 with PR3-ANCA, 26 with MPO-ANCA). During an average (±SD) follow-up of 49±33 months and 18±14 ANCA measurements, 89 ANCA rises and 74 relapses were recorded. ANCA rises correlated with relapses in patients who presented with renal involvement (hazard ratio [HR], 11.09; 95% confidence interval [95% CI], 5.01 to 24.55), but in comparison, associated only weakly with relapses in patients who presented with nonrenal disease (HR, 2.79; 95% CI, 1.30 to 5.98). In conclusion, longitudinal ANCA measurements may be useful in patients with renal involvement but is less valuable in patients with nonrenal disease.

Journal ArticleDOI
TL;DR: Podocyte density reduction with age may directly lead to focal global glomerulosclerosis, and all progressive glomerular diseases can be considered superimposed accelerators of this underlying process.
Abstract: Kidney aging is associated with an increasing proportion of globally scarred glomeruli, decreasing renal function, and exponentially increasing ESRD prevalence. In model systems, podocyte depletion causes glomerulosclerosis, suggesting age-associated glomerulosclerosis could be caused by a similar mechanism. We measured podocyte number, size, density, and glomerular volume in 89 normal kidney samples from living and deceased kidney donors and normal poles of nephrectomies. Podocyte nuclear density decreased with age due to a combination of decreased podocyte number per glomerulus and increased glomerular volume. Compensatory podocyte cell hypertrophy prevented a change in the proportion of tuft volume occupied by podocytes. Young kidneys had high podocyte reserve (podocyte density >300 per 10 6 µ m 3 ), but by 70–80 years of age, average podocyte nuclear density decreased to, 6 µ m 3 , with corresponding podocyte hypertrophy. In older age podocyte detachment rate (urine podocin mRNA-to-creatinine ratio) was higher than at younger ages and podocytes were stressed (increased urine podocin-to-nephrin mRNA ratio). Moreover, in older kidneys, proteinaceous material accumulated in the Bowman space of glomeruli with low podocyte density. In a subset of these glomeruli, mass podocyte detachment events occurred in association with podocytes becoming binucleate (mitotic podocyte catastrophe) and subsequent wrinkling of glomerular capillaries, tuft collapse, and periglomerular fibrosis. In kidneys of young patients with underlying glomerular diseases similar pathologic events were identified in association with focal global glomerulosclerosis. Podocyte density reduction with age may therefore directly lead to focal global glomerulosclerosis, and all progressive glomerular diseases can be considered superimposed accelerators of this underlying process.