scispace - formally typeset
Search or ask a question

Showing papers in "Standards in Genomic Sciences in 2013"


Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and the 1,758,598 bp long genome contains 1,922 protein-coding and 22 RNA genes, including 5 rRNA genes.
Abstract: Peptoniphilus obesi strain ph1T sp. nov., is the type strain of P. obesi sp. nov., a new species within the genus Peptoniphilus. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity. P. obesi strain ph1T is a Gram-positive, obligate anaerobic coccus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,774,150 bp long genome (1 chromosome but no plasmid) contains 1,689 protein-coding and 29 RNA genes, including 5 rRNA genes.

94 citations


Journal ArticleDOI
TL;DR: This project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea, and will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project.
Abstract: The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both of the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.

87 citations


Journal ArticleDOI
TL;DR: The genome of E. massiliensis strain JC163T was isolated from the fecal flora of a healthy Senegalese patient and contains 4,644 protein-coding and 80 RNA genes, including 5 rRNA genes.
Abstract: Enterobacter massiliensis strain JC163T sp. nov. is the type strain of E. massiliensis sp. nov., a new species within the genus Enterobacter. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. E. massiliensis is an aerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,922,247 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 55.1% and contains 4,644 protein-coding and 80 RNA genes, including 5 rRNA genes.

64 citations


Journal ArticleDOI
TL;DR: In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation, and the genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation.
Abstract: Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO, as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.

64 citations


Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and the 2,383,131 bp long genome contains 1,932 protein-coding and 58 RNA genes.
Abstract: Senegalemassilia anaerobia strain JC110T sp.nov. is the type strain of Senegalemassilia anaerobia gen. nov., sp. nov., the type species of a new genus within the Coriobacteriaceae family, Senegalemassilia gen. nov. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. S. anaerobia is a Gram-positive anaerobic coccobacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,383,131 bp long genome contains 1,932 protein-coding and 58 RNA genes.

55 citations


Journal ArticleDOI
TL;DR: Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes.
Abstract: The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes.

48 citations


Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and this strain, whose draft genome is described here, was isolated from the fecal flora of a healthy 16-year-old male Senegalese volunteer.
Abstract: Dielma fastidiosa strain JC13T gen. nov., sp. nov. is the type strain of D. fastidiosa gen. nov., sp. nov., the type species of a new genus within the family Erysipelotrichaceae. This strain, whose draft genome is described here, was isolated from the fecal flora of a healthy 16-year-old male Senegalese volunteer. D. fastidiosa is a Gram-negative anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,574,031 bp long genome comprises a 3,556,241-bp chromosome and a 17,790-bp plasmid. The chromosome contains 3,441 protein-coding and 50 RNA genes, including 3 rRNA genes, whereas the plasmid contains 17 protein-coding genes.

48 citations


Journal ArticleDOI
TL;DR: The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.
Abstract: Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

47 citations


Journal ArticleDOI
TL;DR: A method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice is described.
Abstract: Despite the steadily decreasing costs of genome sequencing, prioritizing organisms for sequencing remains important in large-scale projects. Phylogeny-based selection is of interest to identify those organisms whose genomes can be expected to differ most from those that have already been sequenced. Here, we describe a method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice. The scoring itself, as well as pre- and post-processing of the data, is illustrated using two real-world examples in which the method has already been applied for selecting targets for genome sequencing. These projects are the JGI CSP Genomic Encyclopedia of Bacteria and Archaea phase I, targeting 1,000 type strains, and, on a smaller-scale, the phylogenomics of the Roseobacter clade. Potential artifacts of the method are discussed and compared to a selection approach based on the taxonomic classification.

45 citations


Journal ArticleDOI
TL;DR: Interestingly, the genome contains 25 predicted reductive dehalogenase genes, the majority of which appear to be full length, suggesting a much larger potential for organohalide respiration than previously anticipated.
Abstract: Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, coupling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth has not been observed with any other electron donor or acceptor, nor has fermentative growth been shown. Here we introduce the first full genome of a pure culture within the genus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted reductive dehalogenase genes, the majority of which appear to be full length. The reductive dehalogenase genes are mainly located in two clusters, suggesting a much larger potential for organohalide respiration than previously anticipated.

44 citations


Journal ArticleDOI
TL;DR: The composition of the AbM4 genome is very similar to that of M1 suggesting that the methanogenesis pathway and central metabolism of these strains are highly similar, and both organisms are likely to be amenable to inhibition by small molecule inhibitors and vaccine-based methane mitigation technologies targeting these conserved features.
Abstract: Methanobrevibacter sp. AbM4 was originally isolated from the abomasal contents of a sheep and was chosen as a representative of the Methanobrevibacter wolinii clade for genome sequencing. The AbM4 genome is smaller than that of the rumen methanogen M. ruminantium M1 (2.0 Mb versus 2.93 Mb), encodes fewer open reading frames (ORFs) (1,671 versus 2,217) and has a lower G+C percentage (29% versus 33%). Overall, the composition of the AbM4 genome is very similar to that of M1 suggesting that the methanogenesis pathway and central metabolism of these strains are highly similar, and both organisms are likely to be amenable to inhibition by small molecule inhibitors and vaccine-based methane mitigation technologies targeting these conserved features. The main differences compared to M1 are that AbM4 has a complete coenzyme M biosynthesis pathway and does not contain a prophage or non-ribosomal peptide synthase genes. However, AbM4 has a large CRISPR region and several type I and type II restriction-modification system components. Unusually, DNA-directed RNA polymerase β′ and β″ subunits of AbM4 are joined, a feature only previously observed in some thermophilic archaea. AbM4 has a much reduced complement of genes encoding adhesin-like proteins which suggests it occupies a ruminal niche different from that of M1.

Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and the 5,051,018 bp long genome contains 51 protein-coding and 84 RNA genes, and exhibits a G+C content of 53.1%.
Abstract: Brevibacillus massiliensis strain phRT sp. nov. is the type strain of B. massiliensis sp. nov., a new species within the genus Brevibacillus. This strain was isolated from the fecal flora of a woman suffering from morbid obesity. B. massiliensis is a Gram-positive aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,051,018 bp long genome (1 chromosome but no plasmid) contains 5,051 protein-coding and 84 RNA genes, and exhibits a G+C content of 53.1%.

Journal ArticleDOI
TL;DR: The whole genome revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins, and a 4,096,672 bp chromosomal scaffold was proposed.
Abstract: Lysinibacillus sphaericus strain OT4b.31 is a native Colombian strain having no larvicidal activity against Culex quinquefasciatus and is widely applied in the bioremediation of heavy-metal polluted environments. Strain OT4b.31 was placed between DNA homology groups III and IV. By gap-filling and alignment steps, we propose a 4,096,672 bp chromosomal scaffold. The whole genome (consisting of 4,856,302 bp long, 94 contigs and 4,846 predicted protein-coding sequences) revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins. Sphaericolysin B354, the coleopteran toxin Sip1A and heavy metal resistance clusters from nik, ars, czc, cop, chr, czr and cad operons were identified. Lysinibacillus sphaericus OT4b.31 has applications not only in bioremediation efforts, but also in the biological control of agricultural pests.

Journal ArticleDOI
TL;DR: The Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic spore-forming genus Peptococcaceae as discussed by the authors.
Abstract: Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. This species is of interest because it originates from deep subsurface thermal mineral water at a depth of about 3,000 m. D. kuznetsovii is a rather versatile bacterium as it can grow with a large variety of organic substrates, including short-chain and long-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow methylotrophically with methanol and sulfate and autotrophically with H2 + CO2 and sulfate. For growth it does not require any vitamins. Here, we describe the features of D. kuznetsovii together with the genome sequence and annotation. The chromosome has 3,601,386 bp organized in one contig. A total of 3,567 candidate protein-encoding genes and 58 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth with acetate and methanol, and in CO2 fixation during autotrophic growth are present. Genomic comparison revealed that D. kuznetsovii shows a high similarity with Pelotomaculum thermopropionicum. Genes involved in propionate metabolism of these two strains show a strong similarity. However, main differences are found in genes involved in the electron acceptor metabolism.

Journal ArticleDOI
TL;DR: The complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism is described and it is compared with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences.
Abstract: Strain T5T is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5T was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5T comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5T possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5T a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description.

Journal ArticleDOI
TL;DR: The features of this organism, together with the complete genome sequence and annotation, are described and the genome comprises a 4,981,278-bp long genome and a 23,977-bp plasmid.
Abstract: Bacillus massiliosenegalensis strain JC6T sp. nov. is the type strain of Bacillus massiliosenegalensis sp. nov., a new species within the genus Bacillus. This strain was isolated from the fecal flora of a healthy Senegalese patient. B. massiliosenegalensis is an aerobic Gram-positive rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,981,278-bp long genome comprises a 4,957,301-bp chromosome and a 23,977-bp plasmid. The chromosome contains 4,925 protein-coding and 72 RNA genes, including 4 rRNA genes. The plasmid contains 29 protein-coding genes.

Journal ArticleDOI
TL;DR: The genomic features of the 1,820,886 bp long complete genome sequence of S. agalactiae SA20-06 isolated from a meningoencephalitis outbreak in Nile tilapia (Oreochromis niloticus) from Brazil are presented.
Abstract: Streptococcus agalactiae (Lancefield group B; GBS) is the causative agent of meningoencephalitis in fish, mastitis in cows, and neonatal sepsis in humans. Meningoencephalitis is a major health problem for tilapia farming and is responsible for high economic losses worldwide. Despite its importance, the genomic characteristics and the main molecular mechanisms involved in virulence of S. agalactiae isolated from fish are still poorly understood. Here, we present the genomic features of the 1,820,886 bp long complete genome sequence of S. agalactiae SA20-06 isolated from a meningoencephalitis outbreak in Nile tilapia (Oreochromis niloticus) from Brazil, and its annotation, consisting of 1,710 protein-coding genes (excluding pseudogenes), 7 rRNA operons, 79 tRNA genes and 62 pseudogenes.

Journal ArticleDOI
TL;DR: The genome of E. massiliensis strain phIT was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity and contains 1,901 protein-coding and 51 RNA genes, including 3 rRNA genes.
Abstract: Enorma massiliensis strain phIT is the type strain of E. massiliensis gen. nov., sp. nov., the type species of a new genus within the family Coriobacteriaceae, Enorma gen. nov. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity. E. massiliensis strain phIT is a Gram-positive, obligately anaerobic bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,280,571 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 62.0% and contains 1,901 protein-coding and 51 RNA genes, including 3 rRNA genes.

Journal ArticleDOI
TL;DR: This report summarizes a meeting held in Boulder, CO USA on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes.
Abstract: This report summarizes a meeting held in Boulder, CO USA (19–20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the primary goal of supporting collaboration among researchers for improving fungal ITS sequence resources and developing recommendations for standard ITS primers for the research community.

Journal ArticleDOI
TL;DR: Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics and identified a mode of chemolithotrophy in T. oshimai JL-2 and T. thermophilus, highlighting highly versatile heterotrophic capabilities.
Abstract: The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.

Journal ArticleDOI
TL;DR: A taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes was proposed in this paper. But the classification of S.caldaria and two other Spirochaeta species as members of the emended genus Treponema appeared to be intermixed and are of little taxonomic value.
Abstract: Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1T, was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1T with its 2,869 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and the 5,431,633 bp long genome contains 5,179 protein-coding and 98 RNA genes, including 91 tRNA genes.
Abstract: Strain G2T sp. nov. is the type strain of B. massiliogorillae, a proposed new species within the genus Bacillus. This strain, whose genome is described here, was isolated in France from the fecal sample of a wild western lowland gorilla from Cameroon. B. massiliogorillae is a facultative anaerobic, Gram-variable, rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,431,633 bp long genome (1 chromosome but no plasmid) contains 5,179 protein-coding and 98 RNA genes, including 91 tRNA genes.

Journal ArticleDOI
TL;DR: Based on the genome, in-silico multilocus sequence typing indicates that S. anaerobius emerged as a clone separated from all other S. aureus strains, illustrating host-adaptation linked to missing functions and could prompt the development of post-genomic tools for its rapid discrimination from S.aureus.
Abstract: Staphylococcus aureus subsp. anaerobius is responsible for Morel's disease in animals and a cause of abscess in humans. It is characterized by a microaerophilic growth, contrary to the other strains of S. aureus. The 2,604,446-bp genome (32.7% GC content) of S. anaerobius ST1464 comprises one chromosome and no plasmids. The chromosome contains 2,660 open reading frames (ORFs), 49 tRNAs and three complete rRNAs, forming one complete operon. The size of ORFs ranges between 100 to 4,600 bp except for two ORFs of 6,417 and 7,173 bp encoding segregation ATPase and non-ribosomal peptide synthase, respectively. The chromosome harbors Staphylococcus phage 2638A genome and incomplete Staphylococcus phage genome PT1028, but no detectable CRISPRS. The antibiotic resistance gene for tetracycline was found although Staphylococcus aureus subsp. anaerobius is susceptible to tetracycline in-vitro. Intact oxygen detoxification genes encode superoxide dismutase and cytochrome quinol oxidase whereas the catalase gene is impaired by a stop codon. Based on the genome, in-silico multilocus sequence typing indicates that S. aureus subsp. anaerobius emerged as a clone separated from all other S. aureus strains, illustrating host-adaptation linked to missing functions. Availability of S. aureus subsp. anaerobius genome could prompt the development of post-genomic tools for its rapid discrimination from S. aureus.

Journal ArticleDOI
TL;DR: The features of L. aquimarina DSM 24565T are described together with the permanent-draft genome sequence and annotation and the genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes.
Abstract: Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565T together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).

Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and annotation, and the 2,661,757 bp long genome contains 2,577 protein-coding and 61 RNA genes, including 5 rRNA genes.
Abstract: Megasphaera massiliensis strain NP3T sp. nov. is the type strain of Megasphaera massiliensis sp. nov., a new species within the genus Megasphaera. This strain, whose genome is described here, was isolated from the fecal flora of an HIV-infected patient. M. massiliensis is a Gram-negative, obligate anaerobic coccobacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,661,757 bp long genome (1 chromosome but no plasmid) contains 2,577 protein-coding and 61 RNA genes, including 5 rRNA genes.

Journal ArticleDOI
TL;DR: The genomic annotation revealed that T. senegalensis strain JC301T possesses the complete complement of enzymes necessary for the de novo biosynthesis of amino acids and vitamins (except for riboflavin and biotin), as well as the enzymes involved in the metabolism of various carbon sources, chaperone genes, and genesinvolved in the regulation of polyphosphate and glycogen levels.
Abstract: Timonella senegalensis strain JC301T gen. nov., sp. nov. is the type strain of T. senegalensis gen. nov., sp. nov., a new species within the newly proposed genus Timonella. This bacterial strain was isolated from the fecal flora of a healthy Senegalese patient. In this report, we detail the features of this organism, together with the complete genome sequence and annotation. Timonella senegalensis strain JC301T exhibits the highest 16S rRNA similarity (95%) with Sanguibacter marinus, the closest validly published bacterial species. The genome of T. senegalensis strain JC301T is 3,010,102-bp long, with one chromosome and no plasmid. The genome contains 2,721 protein-coding genes and 72 RNA genes, including 5 rRNA genes. The genomic annotation revealed that T. senegalensis strain JC301T possesses the complete complement of enzymes necessary for the de novo biosynthesis of amino acids and vitamins (except for riboflavin and biotin), as well as the enzymes involved in the metabolism of various carbon sources, chaperone genes, and genes involved in the regulation of polyphosphate and glycogen levels.

Journal ArticleDOI
TL;DR: The workshop made several recommendations and led to the development of a full proposal to the Alfred P. Sloan Foundation as well as to the creation of the Hospital Microbiome Consortium.
Abstract: This report details the outcome of the 1st Hospital Microbiome Project workshop held on June 7th–8th, 2012 at the University of Chicago, USA. The workshop was arranged to determine the most appropriate sampling strategy and approach to building science measurement to characterize the development of a microbial community within a new hospital pavilion being built at the University of Chicago Medical Center. The workshop made several recommendations and led to the development of a full proposal to the Alfred P. Sloan Foundation as well as to the creation of the Hospital Microbiome Consortium.

Journal ArticleDOI
TL;DR: The complete genome sequence and annotation of this bacterium is described together with previously unreported aspects of its phenotype, including methylohalidivorans strain MB2T, of special interest due to its methylotrophy.
Abstract: Leisingera methylohalidivorans Schaefer et al. 2002 emend. Vandecandelaere et al. 2008 is the type species of the genus Leisingera. The genus belongs to the Roseobacter clade (Rhodobacteraceae, Alphaproteobacteria), a widely distributed lineage in marine environments. Leisingera and particularly L. methylohalidivorans strain MB2T is of special interest due to its methylotrophy. Here we describe the complete genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. The 4,650,996 bp long genome with its 4,515 protein-coding and 81 RNA genes consists of three replicons, a single chromosome and two extrachromosomal elements with sizes of 221 kb and 285 kb.

Journal ArticleDOI
TL;DR: This is the first genome of a phototrophic extreme halophile, encoding 2,493 predicted genes as determined by automated genome annotation and promising insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.
Abstract: Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.

Journal ArticleDOI
TL;DR: The features of this organism are described, together with the complete genome sequence and its annotation, and the 2,010,844 bp-long genome contains 1,909 protein-coding and 46 RNA genes, including two rRNA operons.
Abstract: Bartonella florenciae sp. nov. strain R4T is the type strain of B. florenciae sp. nov., a new species within the genus Bartonella. This strain, whose genome is described here, was isolated in France from the spleen of the shrew Crocidura russula. B. florenciae is an aerobic, rod-shaped, Gram-negative bacterium. Here we describe the features of this organism, together with the complete genome sequence and its annotation. The 2,010,844 bp-long genome contains 1,909 protein-coding and 46 RNA genes, including two rRNA operons.