scispace - formally typeset
Open AccessJournal ArticleDOI

Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia.

TLDR
This study was undertaken to explore the clinical relevance and molecular mechanisms underlying the activation of Akt (i.e., phosphorylated Akt, P‐Akt) in pediatric B‐pre ALL.
Abstract
Background Activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, a pro-survival pathway, plays important roles in tumor cell growth. However, the role of Akt in the pathogenesis of pediatric B-precursor acute lymphoblastic leukemia (B-pre ALL) remains to be clarified. This study was undertaken to explore the clinical relevance and molecular mechanisms underlying the activation of Akt (i.e., phosphorylated Akt, P-Akt) in pediatric B-pre ALL. Procedure We evaluated the activation status of Akt in bone marrow samples from 21 children with newly diagnosed B-pre ALL and correlated the expression level of P-Akt with clinicopathologic and prognostic features. Additionally, we transfected the myristoylated Akt cDNA into the B-pre ALL cell line, Nalm-6, and examined the effect, in vitro, of Akt activation on the response to antitumor drugs. Results P-Akt expression in B-pre ALL blast cells at diagnosis was associated significantly with poor response to induction chemotherapy including prednisolone, dexamethasone, vincristine, and adriamycin in B-pre ALL patients. Both overall survival and relapse-free survival in patients with P-Akt expression were reduced significantly more than in patients without P-Akt expression. Activation of Akt reduced the extent of apoptosis induced by the antitumor drugs in Nalm-6 listed above. Activation of Akt did not induce expression of P-glycoprotein, a drug transporter that is capable of conferring multidrug resistance. Conclusion These results support the contention that Akt activation is a mechanism of chemotherapeutic resistance in B-pre ALL and suggest that Akt can be a therapeutic target for the treatment of relapsed or refractory pediatric B-pre ALL. Pediatr Blood Cancer 2012; 59: 83–89. © 2011 Wiley Periodicals, Inc.

read more

Content maybe subject to copyright    Report

日付
4468
24 3 2 3
学総合研究制御科学専攻
( 4 1 )
ActivationofAktisAssociatedWithPoorPrognosis
and Chemotherapeutic Resistance in Pediatric
BPrecursorAcuteLymphoblasticLeukemia
(Akt
の活性は、小児B前駆細胞性急性
化学法抵抗性 てい)
pt3Kl
経路経路によjkt
B 性白 (RpreJqL)
理にけるjgdのいま部分LloR 小児BpreAu.
j
kt のよ調べた
21 BpreAL象に行っ 髄倹jgd:いる
患者i3べて する有意生命
悪いこ れた
CIn trarBfectionAkt BpreA
Im6 用い砲的討で抗脚 Jによ誘導 意に
れた。以
BpreLjgdl
1Jqdが 抵抗 Bpre,qLL
こと示唆さ
では、′J BpreALLにおい髄検 Akt活性 活性
が明かでない患 比較
Akt活性 かわているこ
影響機構
BpreALL細胞株Nalm6
活性 Akt伝子ん孔導入 細胞株いては、化学ある
ステ コビ マイシン が明 かに
ているこ 。こA
kt遺伝子性化経がアポ シス抑制
学療治療に対抵抗性獲得 ていること な知見で
って、本研 (医学)資格あるめる
Citations
More filters
Journal ArticleDOI

HOXB4 knockdown reverses multidrug resistance of human myelogenous leukemia K562/ADM cells by downregulating P-gp, MRP1 and BCRP expression via PI3K/Akt signaling pathway.

TL;DR: Cell Counting kit-8 and flow cytometry assays showed that knockdown of HOXB4 enhanced chemosensitivity and decreased drug efflux in K562/ADM cells, suggesting that repression of HOxB4 might be a key point to reverse MDR of K562 / ADM cells.
Journal ArticleDOI

α-2,8-Sialyltransferase Is Involved in the Development of Multidrug Resistance via PI3K/Akt Pathway in Human Chronic Myeloid Leukemia.

TL;DR: It is indicated that α‐2,8‐sialyltransferases involved in the development of MDR of CML cells probably through ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P‐gp.
Journal ArticleDOI

Targeting mTOR in Acute Lymphoblastic Leukemia.

TL;DR: The current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Journal ArticleDOI

Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway

TL;DR: Osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.
Journal ArticleDOI

Targeting mTOR for the treatment of B cell malignancies.

TL;DR: Emerging preclinical data suggest that despite their biochemical advantage over rapalogs, TOR-KIs may retain a primarily cytostatic response, and combinations of mTOR inhibition with other targeted therapies have demonstrated promising efficacy in several preclinical models.
References
More filters
Journal ArticleDOI

AKT/PKB signaling: navigating downstream.

TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.
Journal ArticleDOI

The activation of Akt/PKB signaling pathway and cell survival

TL;DR: Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival.
Journal ArticleDOI

P-glycoprotein: from genomics to mechanism

TL;DR: A model for how ATP energizes transfer of substrates from these binding sites on P-gp to the outside of the cell is proposed, which accounts for the apparent stoichiometry of two ATPs hydrolysed per molecule of drug transported.
Journal ArticleDOI

Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy.

TL;DR: It is shown that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects.
Journal ArticleDOI

The Akt-mTOR tango and its relevance to cancer.

TL;DR: Two recent studies used mouse genetics to assess the roles of PTEN and TSC2 in cancer, underscoring the importance of Akt-mTOR interplay for cancer progression and therapy.
Related Papers (5)