scispace - formally typeset
Open AccessJournal Article

Anticancer potential of curcumin: preclinical and clinical studies.

Reads0
Chats0
TLDR
Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

read more

Citations
More filters
Journal ArticleDOI

Bioavailability of curcumin: problems and promises.

TL;DR: Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
Journal ArticleDOI

Gut Microbiota in Health and Disease

TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Journal ArticleDOI

Curcumin as “Curecumin”: From kitchen to clinic

TL;DR: Curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin", a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis.
Journal ArticleDOI

Curcumin: From ancient medicine to current clinical trials

TL;DR: Curcumin exhibits great promise as a therapeutic agent, and is currently in human clinical trials for a variety of conditions, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis and Alzheimer’s disease.
Journal ArticleDOI

Curcumin: The story so far

TL;DR: Sufficient data currently exist to advocate phase II clinical evaluation of oral curcumin in patients with invasive malignancy or pre-invasive lesions of the gastrointestinal tract, particularly the colon and rectum.
References
More filters
Journal Article

Chemoprevention of 4-Nitroquinoline 1-Oxide-induced Oral Carcinogenesis by Dietary Curcumin and Hesperidin: Comparison with the Protective Effect of β-Carotene

TL;DR: The modifying effects of two natural products, curcumin and hesperidin, given during the initiation and postinitiation phases of oral carcinogenesis initiated with 4-nitroquinoline 1-oxide (4-NQO) were investigated in male F344 rats and compared with that of beta-carotene as discussed by the authors.
Journal ArticleDOI

The dietary pigment curcumin reduces endothelial Tissue Factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-κB

TL;DR: Investigating the effect of curcumin on the TNF alpha induced expression of endothelial Tissue Factor (TF), the central mediator of coagulation known to be controlled by AP-1 and NF-kappa B found that both, NF- kappa B andAP-1 dependent TF expression, were reduced by cur cumin action.
Journal ArticleDOI

Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo.

TL;DR: Turmeric/curcumin as in the case of isothiocyanate, PEITC, are likely to inhibit activation of carcinogens metabolized by CYP450 isozymes, namely, CYP 1A1, 1A2 and 2B1.
Journal ArticleDOI

Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation.

TL;DR: The effect of curcumin on mitochondrial function is analyzed and it is suggested that mitochondria might be a target by whichCurcumin induces apoptosis of tumor cells.
Journal ArticleDOI

Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production

TL;DR: In chronic inflammation, cytokines induce the production of nitric oxide that is converted to DNA damaging and carcinogenic peroxynitrite and nitrite and inhibited lipopolysaccharide and interferon-gamma induced nitrite production by mouse peritoneal cells by more than 50% at 2.5-10 microM.
Related Papers (5)