scispace - formally typeset
Open AccessJournal ArticleDOI

Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia

Reads0
Chats0
TLDR
It is shown that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis, and primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis.
Abstract
Mesenchymal cells contribute to the ‘stroma’ of most normal and malignant tissues, with specific mesenchymal cells participating in the regulatory niches of stem cells. By examining how mesenchymal osteolineage cells modulate haematopoiesis, here we show that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis. Myelodysplasia resulted and acute myelogenous leukaemia emerged that had acquired several genetic abnormalities while having intact Dicer1. Examining gene expression altered in osteoprogenitors as a result of Dicer1 deletion showed reduced expression of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome—a human bone marrow failure and leukaemia pre-disposition condition. Deletion of Sbds in mouse osteoprogenitors induced bone marrow dysfunction with myelodysplasia. Therefore, perturbation of specific mesenchymal subsets of stromal cells can disorder differentiation, proliferation and apoptosis of heterologous cells, and disrupt tissue homeostasis. Furthermore, primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis. Although a series of genetic and epigenetic events in a single cell may be necessary for oncogenesis, it has been suggested that for malignancy to develop fully a permissive microenvironment or niche is required. Support for this view comes from a new mouse model in which haematopoietic malignancies are caused by genetic changes in the microenvironment of blood cells. Deletion in bone progenitor cells of Dicer1, a gene involved in microRNA processing, leads to a myelodysplastic syndrome-like phenotype that can progress to leukaemia. The progenitor cells have reduced levels of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome, a bone marrow failure that predisposes to leukaemia. A new mouse model is developed in which haematopoietic malignancies are caused by genetic changes in the microenvironment of blood cells. Deletion in bone progenitor cells of Dicer1, a gene involved in microRNA processing, leads to a myelodysplastic syndrome-like phenotype which can progress to leukaemia. Deregulation of Sbds, which is mutated in human Schwachman–Bodian–Diamond syndrome, may be involved in this process.

read more

Citations
More filters
Journal ArticleDOI

The bone marrow niche for haematopoietic stem cells

TL;DR: The haematopoietic stem cell niche remains incompletely defined and beset by competing models, and outstanding questions concern the cellular complexity of the niche, the role of the endosteum and functional heterogeneity among perivascular microenvironments.
Journal ArticleDOI

Cancer stem cells: current status and evolving complexities.

TL;DR: Accumulating evidence suggests that it will be imperative to target all CSC subsets within the tumor to prevent relapse and that the CSC concept will have clinical relevance in specific cases.
Journal ArticleDOI

Mesenchymal Stem Cells Biology, Pathophysiology, Translational Findings, and Therapeutic Implications for Cardiac Disease

TL;DR: The current understanding of MSC biology, mechanism of action in cardiac repair, translational findings, and early clinical trial data of M SC therapy for cardiac disease are reviewed.
Journal ArticleDOI

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs

TL;DR: It is established that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophage leads to the egress of HSCs into the blood.
Journal ArticleDOI

Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow.

TL;DR: It is shown in a mouse model of metastasis that human prostate cancer (PCa) cells directly compete with HSCs for occupancy of the mouse HSC niche, which is believed to be the first evidence that the H SC niche serves as a direct target for PCa during dissemination and plays a central role in bone metastases.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The hallmarks of cancer.

TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Journal ArticleDOI

Osteoblastic cells regulate the haematopoietic stem cell niche

TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Journal ArticleDOI

The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation

TL;DR: It is proposed that Runx2/Cbfa1-expressing preosteoblasts are still bipotential cells, because Osx null preostEoblasts express typical chondrocyte marker genes, and Osx acts downstream of Runx 2/C bfa1.
Related Papers (5)