scispace - formally typeset
Open AccessJournal ArticleDOI

Characterizing transiting exoplanet atmospheres with jwst

TLDR
In this article, the authors explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets.
Abstract
We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high Fp and high Fp/F*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

read more

Citations
More filters
Journal ArticleDOI

A chemical survey of exoplanets with ARIEL

Giovanna Tinetti, +243 more
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Journal ArticleDOI

A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)

TL;DR: In this article, the authors present estimates of how many exoplanets the Transiting Exoplanet Survey Satellite (TESS) will detect, the physical properties of the detected planets, and the properties of those planets that those planets orbit.
Journal ArticleDOI

Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

TL;DR: In this paper, thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere, were modeled and the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature.
Journal ArticleDOI

The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters

TL;DR: In this article, a chain of models, linking the formation of a planet to its observable present-day spectrum, is presented, including the planet's formation and migration, its long-term thermodynamic evolution, a variety of disk chemistry models, a non-gray atmospheric model, and a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL.
Journal ArticleDOI

The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets

TL;DR: In this paper, the Max Planck Institute for Astronomy, Heidelberg, Germany and NASA's Science Mission Directorate provided a grant for a study of the effect of solar radiation on the Earth's magnetic field.
References
More filters
Journal ArticleDOI

The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K

TL;DR: The NextGen Model Atmosphere Grid for low-mass stars for effective temperatures larger than 3000 K was proposed in this article. But it is not suitable for the analysis of star spectra.
Journal ArticleDOI

The NextGen Model Atmosphere grid for $3000\le \Teff \le 10000\K$

TL;DR: The NextGen Model Atmosphere Grid for low mass stars for effective temperatures larger than 3.5°C was presented in this article, with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used.
Journal ArticleDOI

Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b

TL;DR: A measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths is reported, sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere and rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide.
Journal ArticleDOI

A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres

TL;DR: In this paper, the authors highlight the potential importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets and calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants.
Related Papers (5)