scispace - formally typeset
Open AccessJournal ArticleDOI

Deep learning in spiking neural networks

Reads0
Chats0
TLDR
The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
About
This article is published in Neural Networks.The article was published on 2019-03-01 and is currently open access. It has received 756 citations till now. The article focuses on the topics: Spiking neural network & Artificial neural network.

read more

Citations
More filters
Journal ArticleDOI

Two sparsities are better than one: unlocking the performance benefits of sparse-sparse networks

TL;DR: In this article , complementary sparsity is proposed to reduce the computational cost of neural networks by two orders of magnitude by combining weight sparsity and activation sparsity, which can achieve up to 100× improvement in throughput and energy efficiency.
Journal ArticleDOI

Modeling learnable electrical synapse for high precision spatio-temporal recognition

TL;DR: Zhang et al. as mentioned in this paper proposed a refined neural model ECLIF, where membrane potentials propagate to neighbor neurons via convolution operations, and trained them using a back-propagation-through-time algorithm.
Journal ArticleDOI

Event-Based Semantic Segmentation With Posterior Attention

TL;DR: Jia et al. as discussed by the authors proposed a posterior attention module that adjusts the standard attention by the prior knowledge provided by event data, which can be readily plugged into many segmentation backbones.
Proceedings ArticleDOI

Aplicação Do Deep Learning Para Análise De Fissuras Em Testes De Quedas De Pelotas

TL;DR: In this article, a controle rigoroso da qualidade das pelotas for aplicacao das mesmas no processo industrial is presented.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)
Trending Questions (1)
What is the relationship between spiking neural networks and neuromorphics?

The paper mentions that spiking neural networks (SNNs) are more biologically realistic than artificial neural networks (ANNs) and are the better candidates to process spatio-temporal data. Additionally, SNNs combined with bio-plausible local learning rules make it easier to build low-power, neuromorphic hardware. Therefore, the relationship between SNNs and neuromorphics is that SNNs are a suitable approach for implementing neuromorphic hardware.