scispace - formally typeset
Open AccessJournal ArticleDOI

Deep learning in spiking neural networks

TLDR
The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
About
This article is published in Neural Networks.The article was published on 2019-03-01 and is currently open access. It has received 756 citations till now. The article focuses on the topics: Spiking neural network & Artificial neural network.

read more

Citations
More filters
Journal ArticleDOI

Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks

TL;DR: This article elucidates step-by-step the problems typically encountered when training SNNs and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting as well as introducing surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges.
Journal ArticleDOI

Resistive switching materials for information processing

TL;DR: This Review surveys the four physical mechanisms that lead to resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck and examines the device requirements for systems based on RSMs.
Journal ArticleDOI

Deep Learning With Spiking Neurons: Opportunities and Challenges.

TL;DR: This review addresses the opportunities that deep spiking networks offer and investigates in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware.
Journal ArticleDOI

Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.

TL;DR: A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms, and the existing challenges are highlighted to hopefully shed light on future research directions.
Journal ArticleDOI

EEG based multi-class seizure type classification using convolutional neural network and transfer learning

TL;DR: It can be concluded that the EEG based classification of seizure type using CNN model could be used in pre-surgical evaluation for treating patients with epilepsy.
References
More filters
Proceedings Article

Sparse deep belief net model for visual area V2

TL;DR: An unsupervised learning model is presented that faithfully mimics certain properties of visual area V2 and the encoding of these more complex "corner" features matches well with the results from the Ito & Komatsu's study of biological V2 responses, suggesting that this sparse variant of deep belief networks holds promise for modeling more higher-order features.
Journal ArticleDOI

Deep learning in bioinformatics

TL;DR: Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields, including bioinformatics as discussed by the authors, which has been emphasized in both academia and industry.
Journal ArticleDOI

Neuroscience-Inspired Artificial Intelligence.

TL;DR: It is argued that better understanding biological brains could play a vital role in building intelligent machines in humans and other animals.
Book

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition

TL;DR: This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience.
Proceedings ArticleDOI

Applying Convolutional Neural Networks concepts to hybrid NN-HMM model for speech recognition

TL;DR: The proposed CNN architecture is applied to speech recognition within the framework of hybrid NN-HMM model to use local filtering and max-pooling in frequency domain to normalize speaker variance to achieve higher multi-speaker speech recognition performance.
Related Papers (5)
Trending Questions (1)
What is the relationship between spiking neural networks and neuromorphics?

The paper mentions that spiking neural networks (SNNs) are more biologically realistic than artificial neural networks (ANNs) and are the better candidates to process spatio-temporal data. Additionally, SNNs combined with bio-plausible local learning rules make it easier to build low-power, neuromorphic hardware. Therefore, the relationship between SNNs and neuromorphics is that SNNs are a suitable approach for implementing neuromorphic hardware.