scispace - formally typeset
Open AccessJournal ArticleDOI

Deep learning in spiking neural networks

TLDR
The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
About
This article is published in Neural Networks.The article was published on 2019-03-01 and is currently open access. It has received 756 citations till now. The article focuses on the topics: Spiking neural network & Artificial neural network.

read more

Citations
More filters
Journal ArticleDOI

Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks

TL;DR: This article elucidates step-by-step the problems typically encountered when training SNNs and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting as well as introducing surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges.
Journal ArticleDOI

Resistive switching materials for information processing

TL;DR: This Review surveys the four physical mechanisms that lead to resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck and examines the device requirements for systems based on RSMs.
Journal ArticleDOI

Deep Learning With Spiking Neurons: Opportunities and Challenges.

TL;DR: This review addresses the opportunities that deep spiking networks offer and investigates in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware.
Journal ArticleDOI

Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.

TL;DR: A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms, and the existing challenges are highlighted to hopefully shed light on future research directions.
Journal ArticleDOI

EEG based multi-class seizure type classification using convolutional neural network and transfer learning

TL;DR: It can be concluded that the EEG based classification of seizure type using CNN model could be used in pre-surgical evaluation for treating patients with epilepsy.
References
More filters

Hierarchical Models of the Visual System.

Thomas Serre
TL;DR: Convolutional networks are closely related connectionist networks with a similar architecture that have been used in multiple real-world machine learning problems including speech and music classification.
Proceedings Article

Variational Learning for Recurrent Spiking Networks

TL;DR: A plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons is derived in the context of a generative model for distributions of spike sequences, derived from variational inference principles.
Book ChapterDOI

The spike response model: a framework to predict neuronal spike trains

TL;DR: It is found that the Spike Response Model achieves prediction of up to 80% of the spikes with correct timing (±2ms) and other characteristics of activity, such as mean rate and coefficient of variation of spike trains, are predicted in the correct range as well.
Posted Content

STDP as presynaptic activity times rate of change of postsynaptic activity

TL;DR: A weight update formula is introduced that is expressed only in terms of firing rates and their derivatives and that results in changes consistent with those associated with spike-timing dependent plasticity (STDP) rules and biological observations, even though the explicit timing of spikes is not needed.
Journal ArticleDOI

Millisecond-Scale Motor Encoding in a Cortical Vocal Area

TL;DR: Analyzing brain activity in songbirds suggests that the nervous system controls behavior by precisely modulating the timing pattern of electrical events.
Related Papers (5)
Trending Questions (1)
What is the relationship between spiking neural networks and neuromorphics?

The paper mentions that spiking neural networks (SNNs) are more biologically realistic than artificial neural networks (ANNs) and are the better candidates to process spatio-temporal data. Additionally, SNNs combined with bio-plausible local learning rules make it easier to build low-power, neuromorphic hardware. Therefore, the relationship between SNNs and neuromorphics is that SNNs are a suitable approach for implementing neuromorphic hardware.