scispace - formally typeset
Open AccessJournal ArticleDOI

Deep learning in spiking neural networks

Reads0
Chats0
TLDR
The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
About
This article is published in Neural Networks.The article was published on 2019-03-01 and is currently open access. It has received 756 citations till now. The article focuses on the topics: Spiking neural network & Artificial neural network.

read more

Citations
More filters
Journal ArticleDOI

Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks

TL;DR: This article elucidates step-by-step the problems typically encountered when training SNNs and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting as well as introducing surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges.
Journal ArticleDOI

Resistive switching materials for information processing

TL;DR: This Review surveys the four physical mechanisms that lead to resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck and examines the device requirements for systems based on RSMs.
Journal ArticleDOI

Deep Learning With Spiking Neurons: Opportunities and Challenges.

TL;DR: This review addresses the opportunities that deep spiking networks offer and investigates in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware.
Journal ArticleDOI

Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.

TL;DR: A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms, and the existing challenges are highlighted to hopefully shed light on future research directions.
Journal ArticleDOI

EEG based multi-class seizure type classification using convolutional neural network and transfer learning

TL;DR: It can be concluded that the EEG based classification of seizure type using CNN model could be used in pre-surgical evaluation for treating patients with epilepsy.
References
More filters
Journal ArticleDOI

STDP-based spiking deep convolutional neural networks for object recognition

TL;DR: The results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption.
Proceedings ArticleDOI

A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm

TL;DR: This work fabricated a key building block of a modular neuromorphic architecture, a neurosynaptic core, with 256 digital integrate-and-fire neurons and a 1024×256 bit SRAM crossbar memory for synapses using IBM's 45nm SOI process, leading to ultra-low active power consumption.
Journal ArticleDOI

Time series forecasting using a deep belief network with restricted Boltzmann machines

TL;DR: This study proposes a method for time series prediction using Hinton and Salakhutdinov׳s deep belief nets (DBN) which are probabilistic generative neural network composed by multiple layers of restricted Boltzmann machine (RBM).
Journal ArticleDOI

Temporal Coding of Visual Information in the Thalamus

TL;DR: It is found that temporal patterns sometimes introduce redundancy but often encode visual information, and a single LGN cell can encode much more visual information than had been demonstrated previously.
Journal ArticleDOI

SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks

TL;DR: SuperSpike is derived, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns.
Related Papers (5)
Trending Questions (1)
What is the relationship between spiking neural networks and neuromorphics?

The paper mentions that spiking neural networks (SNNs) are more biologically realistic than artificial neural networks (ANNs) and are the better candidates to process spatio-temporal data. Additionally, SNNs combined with bio-plausible local learning rules make it easier to build low-power, neuromorphic hardware. Therefore, the relationship between SNNs and neuromorphics is that SNNs are a suitable approach for implementing neuromorphic hardware.