scispace - formally typeset
Open AccessJournal ArticleDOI

Deep learning in spiking neural networks

Reads0
Chats0
TLDR
The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
About
This article is published in Neural Networks.The article was published on 2019-03-01 and is currently open access. It has received 756 citations till now. The article focuses on the topics: Spiking neural network & Artificial neural network.

read more

Citations
More filters
Posted Content

A Supervised Learning Algorithm for Multilayer Spiking Neural Networks Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design

TL;DR: A novel supervised learning algorithm for SNNs based on temporal coding is proposed, designed to facilitate analog VLSI implementations with analog resistive memory, by which ultrahigh energy efficiency can be achieved.
Proceedings ArticleDOI

A New Neuromorphic Computing Approach for Epileptic Seizure Prediction

TL;DR: A neuromorphic computing approach for seizure prediction is proposed in this work which uses a designed gaussian random discrete encoder to generate spike sequences from the EEG samples and make predictions in a spiking convolutional neural network (Spiking-CNN) which combines the advantages of CNNs and SNNs.
Journal ArticleDOI

An end-to-end exemplar association for unsupervised person Re-identification

TL;DR: Extensive experiments and ablation studies on seven RE-ID datasets demonstrate the superiority of the proposed EEA over most state-of-the-art unsupervised and domain adaptation RE- ID methods.
Journal ArticleDOI

Collective and synchronous dynamics of photonic spiking neurons

TL;DR: The experimental results show that the effective change causes spontaneous modification of the spiking modes and firing rates of clustered neurons, and such collective dynamics can be utilized to realize efficient heuristics for solving NP-hard combinatorial optimization problems.
Journal ArticleDOI

Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects

TL;DR: In this article, a unified architecture of neural networks, called DopNet, is proposed to accurately predict the materials properties of the doped materials by explicitly and independently embedding the host materials and the dopants.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)
Trending Questions (1)
What is the relationship between spiking neural networks and neuromorphics?

The paper mentions that spiking neural networks (SNNs) are more biologically realistic than artificial neural networks (ANNs) and are the better candidates to process spatio-temporal data. Additionally, SNNs combined with bio-plausible local learning rules make it easier to build low-power, neuromorphic hardware. Therefore, the relationship between SNNs and neuromorphics is that SNNs are a suitable approach for implementing neuromorphic hardware.