scispace - formally typeset
Open AccessJournal ArticleDOI

Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity

Reads0
Chats0
TLDR
Differential and redundant roles for RIG-I and MDA5 in pathogen recognition and innate immune signaling that may reflect unique and shared biologic properties of RNA viruses whose differential triggering and control of gene expression may impact pathogenesis and infection are demonstrated.
Abstract
Alpha/beta interferon immune defenses are essential for resistance to viruses and can be triggered through the actions of the cytoplasmic helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Signaling by each is initiated by the recognition of viral products such as RNA and occurs through downstream interaction with the IPS-1 adaptor protein. We directly compared the innate immune signaling requirements of representative viruses of the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Reoviridae for RIG-I, MDA5, and interferon promoter-stimulating factor 1 (IPS-1). In cultured fibroblasts, IPS-1 was essential for innate immune signaling of downstream interferon regulatory factor 3 activation and interferon-stimulated gene expression, but the requirements for RIG-I and MDA5 were variable. Each was individually dispensable for signaling triggered by reovirus and dengue virus, whereas RIG-I was essential for signaling by influenza A virus, influenza B virus, and human respiratory syncytial virus. Functional genomics analyses identified cellular genes triggered during influenza A virus infection whose expression was strictly dependent on RIG-I and which are involved in processes of innate or adaptive immunity, apoptosis, cytokine signaling, and inflammation associated with the host response to contemporary and pandemic strains of influenza virus. These results define IPS-1-dependent signaling as an essential feature of host immunity to RNA virus infection. Our observations further demonstrate differential and redundant roles for RIG-I and MDA5 in pathogen recognition and innate immune signaling that may reflect unique and shared biologic properties of RNA viruses whose differential triggering and control of gene expression may impact pathogenesis and infection.

read more

Citations
More filters
Journal ArticleDOI

Pattern Recognition Receptors and Inflammation

TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.
Journal ArticleDOI

STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.

TL;DR: The identification of a molecule (STING; stimulator of interferon genes) that appears essential for effective innate immune signalling processes is reported, implying a potential role for the translocon in innate signalling pathways activated by select viruses as well as intracellular DNA.
Journal ArticleDOI

Pathogen Recognition by the Innate Immune System

TL;DR: In this review, a comprehensively review the recent progress in the field of PAMP recognition by PRRs and the signaling pathways activated byPRRs.
Journal ArticleDOI

Immune Signaling by RIG-I-like Receptors

TL;DR: Understanding the processes of RLR signaling and response will provide insights to guide RLR-targeted therapeutics for antiviral and immune-modifying applications.
Journal ArticleDOI

Into the Eye of the Cytokine Storm

TL;DR: How high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling is highlighted.
References
More filters
Journal ArticleDOI

A new mathematical model for relative quantification in real-time RT-PCR.

TL;DR: This study enters into the particular topics of the relative quantification in real-time RT-PCR of a target gene transcript in comparison to a reference gene transcript and presents a new mathematical model that needs no calibration curve.
Journal ArticleDOI

The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.

TL;DR: In this article, the authors identify retinoic acid inducible gene I (RIG-I), which encodes a DExD/H box RNA helicase that contains a caspase recruitment domain, as an essential regulator for dsRNA-induced signaling.
Journal ArticleDOI

Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses

TL;DR: It is found that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection.
Journal ArticleDOI

Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3

TL;DR: The identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NF-kappaB and IRF 3 in response to viral infection, and implicates a new role of mitochondria in innate immunity.
Related Papers (5)