scispace - formally typeset
Open AccessJournal ArticleDOI

Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

TLDR
This work bridges the technological gap between signal transduction, conditioning, processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.
Abstract
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Wearable biosensors for healthcare monitoring.

TL;DR: Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability.
Journal ArticleDOI

Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

TL;DR: The process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices, and demonstrates an intrinsicallyStretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre.
Journal ArticleDOI

Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring

TL;DR: The term "lab-on-skin" is introduced to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin, which provide accurate, non-invasive, long-term, and continuous health monitoring.
Journal ArticleDOI

Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing

TL;DR: A skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity is presented.
Journal ArticleDOI

Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics

TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
References
More filters
Journal ArticleDOI

Nanowire active-matrix circuitry for low-voltage macroscale artificial skin

TL;DR: This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.
Journal ArticleDOI

User-interactive electronic skin for instantaneous pressure visualization

TL;DR: This work reports the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels.
Journal ArticleDOI

Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin

TL;DR: Experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements are described.
Journal ArticleDOI

Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

TL;DR: This work presents a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips, and uses SiO2 surface chemistries to construct a 'nano-electronic nose' library.
Related Papers (5)