scispace - formally typeset
Open AccessJournal ArticleDOI

Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

Reads0
Chats0
TLDR
This work bridges the technological gap between signal transduction, conditioning, processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.
Abstract
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Wearable biosensors for healthcare monitoring.

TL;DR: Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability.
Journal ArticleDOI

Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

TL;DR: The process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices, and demonstrates an intrinsicallyStretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre.
Journal ArticleDOI

Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring

TL;DR: The term "lab-on-skin" is introduced to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin, which provide accurate, non-invasive, long-term, and continuous health monitoring.
Journal ArticleDOI

Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing

TL;DR: A skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity is presented.
Journal ArticleDOI

Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics

TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
References
More filters
Journal ArticleDOI

Tattoo-based noninvasive glucose monitoring: A proof-of-concept study

TL;DR: This preliminary investigation indicates that the tattoo-based iontophoresis-sensor platform holds considerable promise for efficient diabetes management and can be extended toward noninvasive monitoring of other physiologically relevant analytes present in the interstitial fluid.
Journal ArticleDOI

Importance of skin temperature in the regulation of sweating.

TL;DR: Human sweating regulation at rest, evaluating thermal inputs effects on thermoregulatory center and internal hypothalamic and skin temperatures is evaluated.
Journal ArticleDOI

The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications.

TL;DR: Reports here are microfluidic models for eccrine sweat generation and flow which are coupled with review of blood-to-sweat biomarker partition pathways, therefore providing insights such as how biomarker concentration changes with sweat flow rate.
Journal ArticleDOI

Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

TL;DR: The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.
Journal ArticleDOI

Variations in regional sweat composition in normal human males

TL;DR: This project aimed to quantify the regional distribution of sweat composition over the skin surface and to determine whether sweat constituent concentrations collected from regional sites can estimate whole‐body concentrations, and is the first investigation to report a positive relationship between sweat [K+] and [lactate.
Related Papers (5)