scispace - formally typeset
Open AccessJournal ArticleDOI

Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

TLDR
This work bridges the technological gap between signal transduction, conditioning, processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.
Abstract
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors.

TL;DR: This article aims to review nature-inspired chemical sensors for enabling fast, relatively inexpensive, and minimally invasive diagnostics and follow-up of the health conditions via monitoring of biomarkers and volatile biomarkers.
Journal ArticleDOI

Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics

TL;DR: The progress of flexible neuromorphic electronics is addressed, from basic backgrounds including synaptic characteristics, device structures, and mechanisms of artificial synapses and nerves, to applications for computing, soft robotics, and neuroprosthetics, and future research directions toward wearable artificial neuromorphic systems are suggested.
Journal ArticleDOI

An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers

TL;DR: In this article, a non-invasive skin-worn device for the simultaneous monitoring of blood pressure and heart rate via ultrasonic transducers and of multiple biomarkers via electrochemical sensors is presented.
Journal ArticleDOI

A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

TL;DR: In this paper, a wearable surface electromyography biosensing system based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities is presented.
Journal ArticleDOI

Wireless chemical sensors and biosensors: A review

TL;DR: The review focuses on radio-based WCSs, and finds that ubiquitous wireless technologies are helping make analytical (bio)chemical sensing appropriate and realistic for mass market adoption, in particular for two major classes of chemical sensor – electrochemical and optical.
References
More filters
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

An ultra-lightweight design for imperceptible plastic electronics

TL;DR: In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Journal ArticleDOI

A review of wearable sensors and systems with application in rehabilitation.

TL;DR: In this paper, a review of wearable sensors and systems that are relevant to the field of rehabilitation is presented, focusing on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders.
Journal ArticleDOI

Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

TL;DR: It is shown that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with even number of layers, which may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.
Journal ArticleDOI

Electrochemical Biosensors - Sensor Principles and Architectures

TL;DR: In this article, the most common traditional traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, including nanowire or magnetic nanoparticle-based biosensing.
Related Papers (5)