scispace - formally typeset

Journal ArticleDOI

In the name of the father: surnames and genetics

01 Jun 2001-Trends in Genetics (Elsevier)-Vol. 17, Iss: 6, pp 353-357

TL;DR: Recent studies involving Y-chromosomal haplotyping and surname analysis are promising and indicate that genealogists of the future could be turning to records written in DNA, as well as in paper archives, to solve their problems.

AbstractHereditary surnames contain information about relatedness within populations. They have been used as crude indicators of population structure and migration events, and to subdivide samples for epidemiological purposes. In societies that use patrilineal surnames, a surname should correlate with a type of Y chromosome, provided certain assumptions are met. Recent studies involving Y-chromosomal haplotyping and surname analysis are promising and indicate that genealogists of the future could be turning to records written in DNA, as well as in paper archives, to solve their problems.

Topics: Patronymic surname (63%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution.
Abstract: Until recently, the Y chromosome seemed to fulfil the role of juvenile delinquent among human chromosomes — rich in junk, poor in useful attributes, reluctant to socialize with its neighbours and with an inescapable tendency to degenerate. The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution. Y-chromosome research is growing up.

885 citations


Journal ArticleDOI
TL;DR: A simple set of rules was developed to unambiguously label the different clades nested within a single most parsimonious phylogeny, which supersedes and unifies past nomenclatures and allows the inclusion of additional mutations and haplogroups yet to be discovered.
Abstract: The Y chromosome contains the largest nonrecombining block in the human genome. By virtue of its many polymorphisms, it is now the most informative haplotyping system, with applications in evolutionary studies, forensics, medical genetics, and genealogical reconstruction. However, the emergence of several unrelated and nonsystematic nomenclatures for Y-chromosomal binary haplogroups is an increasing source of confusion. To resolve this issue, 245 markers were genotyped in a globally representative set of samples, 74 of which were males from the Y Chromosome Consortium cell line repository. A single most parsimonious phylogeny was constructed for the 153 binary haplogroups observed. A simple set of rules was developed to unambiguously label the different clades nested within this tree. This hierarchical nomenclature system supersedes and unifies past nomenclatures and allows the inclusion of additional mutations and haplogroups yet to be discovered.

768 citations


Journal ArticleDOI
TL;DR: Improvements in genotyping technologies have led to the increased use of genetic polymorphism for inference about population phenomena, such as migration and selection, which presents a challenge in analysis of polymorphism data.
Abstract: Improvements in genotyping technologies have led to the increased use of genetic polymorphism for inference about population phenomena, such as migration and selection. Such inference presents a challenge, because polymorphism data reflect a unique, complex, non-repeatable evolutionary history. Traditional analysis methods do not take this into account. A stochastic process known as the 'coalescent' presents a coherent statistical framework for analysis of genetic polymorphisms.

641 citations


Cites background from "In the name of the father: surnames..."

  • ...This is sometimes true, for example, when Y chromosomes are used to study patrilineal inheritance of surname...

    [...]


Journal ArticleDOI
Abstract: Sherlock Holmes said "it has long been an axiom of mine that the little things are infinitely the most important", but never imagined that such a little thing, the DNA molecule, could become perhaps the most powerful single tool in the multifaceted fight against crime. Twenty years after the development of DNA fingerprinting, forensic DNA analysis is key to the conviction or exoneration of suspects and the identification of victims of crimes, accidents and disasters, driving the development of innovative methods in molecular genetics, statistics and the use of massive intelligence databases.

514 citations


BookDOI
29 Nov 2004
TL;DR: The Frequentist Approaches Bayesian Approaches Statistical Evaluation of Mixtures Low Copy Number and Interpretation Issues Associated with DNA Databases are discussed.
Abstract: Biological Basis for DNA Evidence, Peter Gill and John Buckleton Historical and Background Biology Understanding PCR Profiles A Framework for Interpreting Evidence, John Buckleton The Frequentist Approach The Logical Approach The Full Bayesian Approach A Possible Solution A Comparison of the Different Approaches Population Genetic Models, John Buckleton Product Rule Simulation Testing Discussion of the Product Rule and the Subpopulation Model A Complex Case Example - DNA Evidence and Orethral James Simpson Relatedness, John Buckleton and Christopher Triggs Conditional Probabilities Joint Probabilities The Unifying Formula The Effect of Linkage Validating Databases, John Buckleton Which Is the Relevant Population? Population Databases Validating the Population Genetic Model Estimating Q Descriptive Statistics for Databases Sampling Effects, John Buckleton and James Curran Bounds and a Level Methods for Assessing Sampling Uncertainty Minimum Allele Probabilities Discussion of the Appropriateness of Sampling Uncertainty Estimates Mixtures, Tim Clayton and John Buckleton Frequentist Approaches Bayesian Approaches Statistical Evaluation of Mixtures Low Copy Number, John Buckleton and Peter Gill Changes in LCN Profile Morphology The Interpretation of LCN Profiles Non-autosomal Forensic Markers, Simon Walsh, SallyAnn Harbison, and John Buckleton Forensic Mitochondrial DNA Typing Forensic Y Chromosome Analysis Forensic X Chromosome Analysis A Famous Case Example - The Romanovs Parentage Testing, John Buckleton, Tim Clayton, and Chris Triggs Evaluation Of Evidence Paternity Trios: Mother, Child and Alleged Father Non-autosomal DNA Use of the Sub-Population Model of Balding and Nichols to Evaluate the Paternity Index Relatedness in Paternity Cases Multiple Children Inconsistencies in the Mendelian Pattern 'Exclusions' Paternity Trios: Mother, Child and Alleged Father Considering the Possibility of Silent (Null) Alleles Disaster Victim Identification, Identification of Missing Persons, and Immigration Cases, John Buckleton, Chris Triggs, and Tim Clayton Mitochondrial or Nuclear DNA? Human Remains - Obtaining a Profile from Bodily Remains Extraction of DNA from Bone, Tooth, Hair and Nail Complicating Factors DNA Intelligence Databases, Simon Walsh and John Buckleton A Brief History Functional Aspects Legislation Aspects of Forensic Significance Social and ethical considerations Interpretation Issues Associated with DNA Databases

355 citations


References
More filters

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

21,023 citations


Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

11,645 citations


Journal ArticleDOI
TL;DR: A method for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that the MJ method does not resolve ties.
Abstract: Reconstructing phylogenies from intraspecific data (such as human mitochondrial DNA variation) is often a challenging task because of large sample sizes and small genetic distances between individuals. The resulting multitude of plausible trees is best expressed by a network which displays alternative potential evolutionary paths in the form of cycles. We present a method ("median joining" [MJ]) for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that our MJ method does not resolve ties. The MJ method is hence closely related to the earlier approach of Foulds, Hendy, and Penny for estimating MP trees but can be adjusted to the level of homoplasy by setting a parameter epsilon. Unlike our earlier reduced median (RM) network method, MJ is applicable to multistate characters (e.g., amino acid sequences). An additional feature is the speed of the implemented algorithm: a sample of 800 worldwide mtDNA hypervariable segment I sequences requires less than 3 h on a Pentium 120 PC. The MJ method is demonstrated on a Tibetan mitochondrial DNA RFLP data set.

8,858 citations


Journal ArticleDOI
TL;DR: A new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size is presented and its ability to detect tandem repeats that have undergone extensive mutational change is demonstrated.
Abstract: A tandem repeat in DNA is two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats have been shown to cause human disease, may play a variety of regulatory and evolutionary roles and are important laboratory and analytic tools. Extensive knowledge about pattern size, copy number, mutational history, etc. for tandem repeats has been limited by the inability to easily detect them in genomic sequence data. In this paper, we present a new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size. We model tandem repeats by percent identity and frequency of indels between adjacent pattern copies and use statistically based recognition criteria. We demonstrate the algorithm’s speed and its ability to detect tandem repeats that have undergone extensive mutational change by analyzing four sequences: the human frataxin gene, the human β T cell receptor locus sequence and two yeast chromosomes. These sequences range in size from 3 kb up to 700 kb. A World Wide Web server interface at c3.biomath.mssm.edu/trf.html has been established for automated use of the program.

5,431 citations


Journal ArticleDOI
TL;DR: This book aims to provide a history of Chinese modern art from 17th Century to the present day through the lens of 20th Century critics, practitioners, journalists, and mediaeval and modern-day critics.
Abstract: J. Craig Venter,* Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Subramanian, Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine Nelson, Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman, Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fasulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington, Jane Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi, Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eilbeck, Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E. Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei, Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov, Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong, Shiaoping C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter, Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage, Feroze Ali, Huijin An, Aderonke Awe, Danita Baldwin, Holly Baden, Mary Barnstead, Ian Barrow, Karen Beeson, Dana Busam, Amy Carver, Angela Center, Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond Desilets, Susanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, Andres Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes, Cheryl Heiner, Suzanne Hladun, Damon Hostin, Jarrett Houck, Timothy Howland, Chinyere Ibegwam, Jeffery Johnson, Francis Kalush, Lesley Kline, Shashi Koduru, Amy Love, Felecia Mann, David May, Steven McCawley, Tina McIntosh, Ivy McMullen, Mee Moy, Linda Moy, Brian Murphy, Keith Nelson, Cynthia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi, Matthew Reardon, Robert Rodriguez, Yu-Hui Rogers, Deanna Romblad, Bob Ruhfel, Richard Scott, Cynthia Sitter, Michelle Smallwood, Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint, Sukyee Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita Williams, Monica Williams, Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri, Josep F. Abril, Roderic Guigó, Michael J. Campbell, Kimmen V. Sjolander, Brian Karlak, Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas Hatton, Apurva Narechania, Karen Diemer, Anushya Muruganujan, Nan Guo, Shinji Sato, Vineet Bafna, Sorin Istrail, Ross Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph, David Allen, Anand Basu, James Baxendale, Louis Blick, Marcelo Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne, Carl Dahlke, Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely, Shiva Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser, Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Harris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine Jordan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft, Alexander Levitsky, Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma, William Majoros, Joe McDaniel, Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc Nguyen, Marc Nodell, Sue Pan, Jim Peck, Marshall Peterson, William Rowe, Robert Sanders, John Scott, Michael Simpson, Thomas Smith, Arlan Sprague, Timothy Stockwell, Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, Xiaohong Zhu T H E H U M A N G E N O M E

4,898 citations