scispace - formally typeset
Journal ArticleDOI

Multiparametric imaging of biological systems by force-distance curve-based AFM.

TLDR
The principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions are discussed.
Abstract
A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve–based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions.

read more

Citations
More filters
Journal ArticleDOI

Seeing and Touching the Mycomembrane at the Nanoscale.

TL;DR: The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unravelled by AFM force spectroscopy studies as mentioned in this paper.
Journal ArticleDOI

Evaluation of whole cell fixation methods for the analysis of nanoscale surface features of Yersinia pestis KIM

TL;DR: A nanoscale evaluation of the effects of inactivation on cell morphology and surface bioactivity may provide a crucial preparatory approach to study virulent pathogens in the lab setting using high‐resolution microscopic techniques such as atomic force microscopy.

Analytical Methods, Correlative Microscopy and Software Tools for Quantitative Single Molecule Localization Microscopy

TL;DR: Analytical methods that accounts for two major sources of errors in analysis of membrane protein organization with SMLM are described, and the relative Mean Squared Error of the combined approach is characterized, and it is found that it can significantly reduce the errors in quantification.
References
More filters
Journal ArticleDOI

Models for the specific adhesion of cells to cells

TL;DR: The force required to separate two cells is shown to be greater than the expected electrical forces between cells, and of the same order of magnitude as the forces required to pull gangliosides and perhaps some integral membrane proteins out of the cell membrane.
Journal ArticleDOI

Force measurements with the atomic force microscope: Technique, interpretation and applications

TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.
Journal ArticleDOI

Single-molecule mechanics of mussel adhesion

TL;DR: A single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa is reported, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition.
Journal ArticleDOI

Nanomechanical analysis of cells from cancer patients

TL;DR: This work reports the stiffness of live metastatic cancer cells taken from the body fluids of patients with suspected lung, breast and pancreas cancer, and shows that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.
Journal ArticleDOI

Calculation of thermal noise in atomic force microscopy

TL;DR: In this paper, the authors calculated the thermal noise of a cantilever with a free end by considering all possible vibration modes of the cantilevers and showed that if the end is supported by a hard surface, no thermal fluctuations of the deflection are possible.
Related Papers (5)