scispace - formally typeset
Open AccessJournal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TLDR
In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract
Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

read more

Citations
More filters
Journal ArticleDOI

The WU-Minn Human Connectome Project: An Overview

TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.
Journal ArticleDOI

Functional network organization of the human brain

TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.
Journal ArticleDOI

A multi-modal parcellation of human cerebral cortex

TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Journal ArticleDOI

Methods to detect, characterize, and remove motion artifact in resting state fMRI

TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.
References
More filters
Journal ArticleDOI

Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging

TL;DR: FMRI activity in human MT does in fact decrease at and near individually measured equiluminance, and area MT has a much higher contrast sensitivity than that in several other areas, including primary visual cortex (V1).
Journal ArticleDOI

Localization of cognitive operations in the human brain

TL;DR: Support for the general hypothesis that the human brain localizes mental operations of the kind posited by cognitive theories is integrated in the performance of cognitive tasks such as reading comes from studies in mental imagery, timing, and memory.
Journal ArticleDOI

Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate

TL;DR: The findings from rabies and HSV1 experiments indicate that the regions of the cerebellar cortex that receive input from M1 are the same as those that project to M1.
Journal ArticleDOI

Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.

TL;DR: Monitoring and removing low-frequency respiration variations led to a significant improvement in the identification of task-related activation and deactivation and only slight differences in regions correlated with the posterior cingulate at rest.
Journal ArticleDOI

Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template

TL;DR: An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images.
Related Papers (5)