scispace - formally typeset
Search or ask a question

Showing papers on "Cannabinoid receptor published in 2010"


Journal ArticleDOI
TL;DR: This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non- CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors.
Abstract: There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.

1,439 citations


Journal ArticleDOI
TL;DR: Individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively.
Abstract: Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. We found that a similar form of functional antagonism was produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol. After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of Mgll (encoding MAGL). Chronic MAGL blockade also caused physical dependence, impaired endocannabinoid-dependent synaptic plasticity and desensitized brain CB1 receptors. These data contrast with blockade of fatty acid amide hydrolase, an enzyme that degrades the other major endocannabinoid anandamide, which produced sustained analgesia without impairing CB1 receptors. Thus, individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively.

553 citations


Journal ArticleDOI
01 Jul 2010-Glia
TL;DR: The selective targeting of cannabinoid‐like receptors should provide therapeutic relieve without inducing the typical psychotropic effects and possible addictive properties associated with the use of Δ9‐tetrahydrocannabinol, the main psychotropic ingredient produced by the plant Cannabis sativa.
Abstract: CB1 and CB2 receptors are activated by a plethora of cannabinoid compounds, be they endogenously-produced, plant-derived or synthetic. These receptors are expressed by microglia, astrocytes and astrocytomas, and their activation regulates these cells' differentiation, functions and viability. Recent studies show that glial cells also express cannabinoid-like receptors, and that their activation regulates different cell functions, but also control cell viability. This review summarizes this evidence, and discusses how selective compounds targeting cannabinoid-like receptors constitute promising therapeutics to manage neuroinflammation and eradicate malignant astrocytomas. Importantly, the selective targeting of cannabinoid-like receptors should provide therapeutic relieve without inducing the typical psychotropic effects and possible addictive properties associated with the use of Delta9-tetrahydrocannabinol, the main psychotropic ingredient produced by the plant Cannabis sativa.

440 citations


Journal ArticleDOI
TL;DR: It is demonstrated that aCB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile.
Abstract: Obesity and its metabolic consequences are a major public health concern worldwide. Obesity is associated with overactivity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis, and insulin resistance. Cannabinoid-1 receptor (CB1R) antagonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity, but their therapeutic potential is limited by neuropsychiatric side effects. Here we have demonstrated that a CB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile. These effects were due to blockade of CB1R in peripheral tissues, including the liver, as verified through the use of CB1R-deficient mice with or without transgenic expression of CB1R in the liver. These results suggest that targeting peripheral CB1R has therapeutic potential for alleviating cardiometabolic risk in obese patients.

428 citations


Journal ArticleDOI
TL;DR: The results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.
Abstract: The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase alpha-beta-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB2-mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activity-dependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB1-dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.

411 citations


Journal ArticleDOI
TL;DR: Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain, with recent data on genetic mutations in the endocannabinoid system in GI disease highlighted.

373 citations


Journal ArticleDOI
TL;DR: An important role for endocannabinoid signaling is demonstrated in the process of stress HPA habituation, and it is suggested that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.
Abstract: Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocannabinoid signaling responds to and regulates the activity of the hypothalamic–pituitary–adrenal (HPA) axis that governs the secretion of glucocorticoids; however, the role this system plays in adaptation of the neuroendocrine response to repeated stress is not well characterized. Herein, we demonstrate a divergent regulation of the two endocannabinoid ligands, N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), following repeated stress such that AEA content is persistently decreased throughout the corticolimbic stress circuit, whereas 2-AG is exclusively elevated within the amygdala in a stress-dependent manner. Pharmacological studies demonstrate that this divergent regulation of AEA and 2-AG contribute to distinct forms of HPA axis habituation. Inhibition of AEA hydrolysis prevented the development of basal hypersecretion of corticosterone following repeated stress. In contrast, systemic or intra-amygdalar administration of a CB1 receptor antagonist before the final stress exposure prevented the repeated stress-induced decline in corticosterone responses. The present findings demonstrate an important role for endocannabinoid signaling in the process of stress HPA habituation, and suggest that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.

303 citations


Journal ArticleDOI
TL;DR: The results suggest that anandamide-mediated signaling at peripheral CB1 receptors controls the access of pain-related inputs to the CNS, and brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy.
Abstract: Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS. Despite its inability to access brain and spinal cord, URB937 attenuated behavioral responses indicative of persistent pain in rodent models of peripheral nerve injury and inflammation and prevented noxious stimulus-evoked neuronal activation in spinal cord regions implicated in nociceptive processing. CB₁ cannabinoid receptor blockade prevented these effects. These results suggest that anandamide-mediated signaling at peripheral CB₁ receptors controls the access of pain-related inputs to the CNS. Brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy.

303 citations


Journal ArticleDOI
TL;DR: This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB(1), non- CB(2) G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner.
Abstract: It is widely accepted that non-endogenous compounds that target CB(1) and/or CB(2) receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Delta(9)-tetrahydrocannabinol or nabilone, both CB(1)/CB(2) receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB(2)-selective agonists, peripherally restricted CB(1)/CB(2) receptor agonists and CB(1)/CB(2) antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB(1) and CB(2) receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB(1), non- CB(2) G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB(1) and/or CB(2) receptors.

297 citations


Journal ArticleDOI
TL;DR: Evidence exists that CB(1)Rs can also stimulate adenylyl cyclase via G, induce receptor-mediated Ca(2+) fluxes and stimulate phospholipases in some experimental models, and the altered pharmacological properties of these receptor complexes may explain the pharmacological differences observed in various tissues.
Abstract: The CB(1) cannabinoid receptor (CB(1)R) is the major cannabinoid receptor in neuronal cells and the brain, but it also occurs in endocrine cells and other peripheral tissues. CB(1)R is a member of the superfamily of G-protein-coupled receptors (GPCRs), which are characterized by seven transmembrane helices. The major mediators of CB(1)R are the G proteins of the G(i/o) family, which inhibit adenylyl cyclases in most tissues and cells, and regulate ion channels, including calcium and potassium ion channels. Regulation of ion channels is an important component of neurotransmission modulation by endogenous cannabinoid compounds released in response to depolarization and Ca(2+)-mobilizing hormones. However, evidence exists that CB(1)Rs can also stimulate adenylyl cyclase via G(s), induce receptor-mediated Ca(2+) fluxes and stimulate phospholipases in some experimental models. Stimulation of CB(1)R also leads to phosphorylation and activation of mitogen-activated protein kinases (MAPK), such as p42/p44 MAPK, p38 MAPK and c-Jun N-terminal kinase, which can regulate nuclear transcription factors. Activated and phosphorylated CB(1)Rs also associate with beta-arrestin molecules, which can induce the formation of signalling complexes and participate in the regulation of GPCR signalling. Recent data also suggest that CB(1)Rs can form homo- and heterodimers/oligomers, and the altered pharmacological properties of these receptor complexes may explain the pharmacological differences observed in various tissues.

292 citations


Journal ArticleDOI
TL;DR: The hypothesis that glucocorticoid-induced fast feedback inhibition of the HPA axis is mediated by a nongenomic signaling mechanism that involves endocannabinoid signaling at the level of the PVN is supported.
Abstract: Glucocorticoid hormones are secreted in response to stimuli that activate the hypothalamo-pituitary-adrenocortical (HPA) axis and self-regulate through negative feedback. Negative feedback that occurs on a rapid time scale is thought to act through nongenomic mechanisms. In these studies, we investigated fast feedback inhibition of HPA axis stress responses by direct glucocorticoid action at the paraventricular nucleus of the hypothalamus (PVN). Local infusion of dexamethasone or a membrane-impermeant dexamethasone-BSA conjugate into the PVN rapidly inhibits restraint-induced ACTH and corticosterone release in a manner consistent with feedback actions at the cell membrane. The dexamethasone fast feedback response is blocked by the cannabinoid CB1 receptor antagonist AM-251, suggesting that fast feedback requires local release of endocannabinoids. Hypothalamic tissue content of the endocannabinoid 2-arachidonoyl glycerol is elevated by restraint stress, consistent with endocannabinoid action on feedback processes. These data support the hypothesis that glucocorticoid-induced fast feedback inhibition of the HPA axis is mediated by a nongenomic signaling mechanism that involves endocannabinoid signaling at the level of the PVN.

Journal ArticleDOI
TL;DR: NAGly is the most effective lipid recruiter of BV-2 microglia currently reported and its effects mimic those of Abn-CBD, and the hypothesis that GPR18 is the previously unidentified 'Abn- CBD' receptor is supported.
Abstract: Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration. Using Boyden chamber migration experiments, yellow tetrazolium (MTT) conversion, In-cell Western, qPCR and immunocytochemistry we show that NAGly, at sub-nanomolar concentrations, and Abn-CBD potently drive cellular migration in both BV-2 microglia and HEK293-GPR18 transfected cells, but neither induce migration in HEK-GPR55 or non-transfected HEK293 wildtype cells. Migration effects are blocked or attenuated in both systems by the 'Abn-CBD' receptor antagonist O-1918, and low efficacy agonists N-arachidonoyl-serine and cannabidiol. NAGly promotes proliferation and activation of MAP kinases in BV-2 microglia and HEK293-GPR18 cells at low nanomolar concentrations - cellular responses correlated with microglial migration. Additionally, BV-2 cells show GPR18 immunocytochemical staining and abundant GPR18 mRNA. qPCR demonstrates that primary microglia, likewise, express abundant amounts of GPR18 mRNA. NAGly is the most effective lipid recruiter of BV-2 microglia currently reported and its effects mimic those of Abn-CBD. The data generated from this study supports the hypothesis that GPR18 is the previously unidentified 'Abn-CBD' receptor. The marked potency of NAGly acting on GPR18 to elicit directed migration, proliferation and perhaps other MAPK-dependent phenomena advances our understanding of the lipid-based signaling mechanisms employed by the CNS to actively recruit microglia to sites of interest. It offers a novel research avenue for developing therapeutics to elicit a self-renewing population of neuroregenerative microglia, or alternatively, to prevent the accumulation of misdirected, pro-inflammatory microglia which contribute to and exacerbate neurodegenerative disease.

Journal ArticleDOI
TL;DR: In this paper, the effects of JWH018 on neurotransmission in cultured autaptic hippocampal neurons were investigated, and it was shown that the indole derivative is a ligand for the CB1 (CB1) cannabinoid receptor and inhibits cAMP production in CB1 receptor-expressing CHO cells.
Abstract: Background and purpose: ‘Spice’ is an herbal blend primarily marketed in Europe as a mild hallucinogen with prominent cannabis-like effects and as a legal alternative to cannabis. However, a recent report identified a number of synthetic additives in samples of ‘Spice’. One of these, the indole derivative JWH018, is a ligand for the cannabinoid receptor 1 (CB1) cannabinoid receptor and inhibits cAMP production in CB1 receptor-expressing CHO cells. Other effects of JWH018 on CB1 receptor-mediated signalling are not known, particularly in neurons. Here we have evaluated the signalling pathways activated by JWH018 at CB1 receptors. Experimental approach: We investigated the effects of JWH018 on neurotransmission in cultured autaptic hippocampal neurons. We further analysed its activation of ERK1/2 mitogen activated protein kinase (MAPK) and internalization of CB1 receptors in HEK293 cells stably expressing this receptor. Key results: In cultured autaptic hippocampal neurons, JWH018 potently inhibited excitatory postsynaptic currents (IC50= 14.9 nM) in a concentration- and CB1 receptor-dependent manner. Furthermore, it increased ERK1/2 MAPK phosphorylation (EC50= 4.4 nM). We also found that JWH018 potently induced rapid and robust CB1 receptor internalization (EC50= 2.8 nM; t1/2= 17.3 min). Conclusions and implications: JWH018, a prominent component of several herbal preparations marketed for their psychoactivity, is a potent and effective CB1 receptor agonist that activates multiple CB1 receptor signalling pathways. Thus, it is likely that the subjective effects of ‘Spice’ are due to activation of cannabinoid CB1 receptors by JWH018, added to this herbal preparation.

Journal ArticleDOI
TL;DR: This review will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects.

Journal ArticleDOI
TL;DR: Genetic and pharmacological studies demonstrate that the reduction in anandamide signaling may be involved in the initiation of HPA axis activation and the generation of changes in emotional behaviour, while the increase in 2-AG signaling may been involved in terminating the stress response.
Abstract: The endocannabinoid system is a neuroactive lipid signaling system that functions to gate synaptic transmitter release. Accumulating evidence has demonstrated that this system is responsive to modulation by both stress and glucocorticoids within the hypothalamus and limbic structures; however, the nature of this regulation is more complex than initially assumed. The aim of the current review is to summarize the research to date which examines the effects of acute stress and glucocorticoid administration on endocannabinoid signaling in limbic-hypothalamic-pituitary-adrenal (LHPA) axis, and in turn the role endocannabinoid signaling plays in the neurobehavioural responses to acute stress and glucocorticoid administration. The majority of research suggests that acute stress produces a mobilization of the endocannabinoid 2-arachidonoylglycerol (2-AG) while concurrently reducing the tissue content of the other endocannabinoid ligand anandamide. Genetic and pharmacological studies demonstrate that the reduction in anandamide signaling may be involved in the initiation of HPA axis activation and the generation of changes in emotional behaviour, while the increase in 2-AG signaling may be involved in terminating the stress response, limiting neuronal activation and contributing to changes in motivated behaviours. Collectively, these studies reveal a complex interplay between endocannabinoids and the HPA axis, and further identify endocannabinoid signaling as a critical regulator of the stress response.

Journal ArticleDOI
TL;DR: The immune influence of cannabinoid ligands is not fully elucidated, however, aspects of their immunomodulatory effects provide the basis for a context-dependent targeted therapeutic approach, thus leading to the possibility for the use of cannabinoids in the treatment of inflammatory disease.

Journal ArticleDOI
TL;DR: These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2- AG in modulating CB1 receptor sensitization and endocannabinoid tone.
Abstract: Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.

Journal ArticleDOI
TL;DR: Observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways.

Journal ArticleDOI
TL;DR: Experiments with mice in which GPR55 has been inactivated reveal a role for this receptor in neuropathic and inflammatory pain as well as in bone physiology, and delineating the pharmacology of this receptor and the discovery of selective agonists and antagonists merits further study.

Journal ArticleDOI
14 Jan 2010-PLOS ONE
TL;DR: The effects of the endocannabinoid AEA on primary human T-lymphocytes are investigated for the first time, demonstrating that it is a powerful modulator of immune cell functions and clarified that CB2R mediates the immunosuppressive activity of AEA.
Abstract: BACKGROUND Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB(1)R and CB(2)R, making AEA a prominent member of the "endocannabinoid" family. Also immune cells express CB(1) and CB(2) receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells. METHODOLOGY/SIGNIFICANCE In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-alpha and INF-gamma from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB(2)R, since it could be mimicked by the CB(2)R selective agonist JWH-015, and could be blocked by the specific CB(2)R antagonist SR144528. Instead the selective CB(1)R agonist ACEA, or the selective CB(1)R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17. CONCLUSIONS/SIGNIFICANCE Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB(2)R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches.

Journal ArticleDOI
TL;DR: The findings show that ABHD12 performs essential functions in both the central and peripheral nervous systems and the eye, and any future drug-mediated interference with this enzyme should consider the potential risk of long-term adverse effects.
Abstract: Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a neurodegenerative disease marked by early-onset cataract and hearing loss, retinitis pigmentosa, and involvement of both the central and peripheral nervous systems, including demyelinating sensorimotor polyneuropathy and cerebellar ataxia. Previously, we mapped this Refsum-like disorder to a 16 Mb region on chromosome 20. Here we report that mutations in the ABHD12 gene cause PHARC disease and we describe the clinical manifestations in a total of 19 patients from four different countries. The ABHD12 enzyme was recently shown to hydrolyze 2-arachidonoyl glycerol (2-AG), the main endocannabinoid lipid transmitter that acts on cannabinoid receptors CB1 and CB2. Our data therefore represent an example of an inherited disorder related to endocannabinoid metabolism. The endocannabinoid system is involved in a wide range of physiological processes including neurotransmission, mood, appetite, pain appreciation, addiction behavior, and inflammation, and several potential drugs targeting these pathways are in development for clinical applications. Our findings show that ABHD12 performs essential functions in both the central and peripheral nervous systems and the eye. Any future drug-mediated interference with this enzyme should consider the potential risk of long-term adverse effects.

Journal ArticleDOI
TL;DR: The latest data on the non- CB1, non-CB2 receptors suggested so far for endocannabinoids and plant or synthetic cannabinoids are reviewed, with special emphasis on uncharacterized or orphan G-protein-coupled receptors as well as on transient receptor potential channels.
Abstract: The molecular mechanism of action of Δ9-tetrahydrocannabinol (THC), the psychotropic constituent of Cannabis, has been a puzzle during the three decades separating its characterization, in 1964, and the cloning, in the 1990s, of cannabinoid CB1 and CB2 receptors. However, while these latter proteins do mediate most of the pharmacological actions of THC, they do not seem to act as receptors for other plant cannabinoids (phytocannabinoids), nor are they the unique targets of the endogenous lipids that were originally identified in animals as agonists of CB1 and CB2 receptors, and named endocannabinoids. Over the last decade, several potential alternative receptors for phytocannabinoids, endocannabinoids, and even synthetic cannabimimetics, have been proposed, often based uniquely on pharmacological evidence obtained in vitro. In particular, the endocannabinoid anandamide, and the other most abundant Cannabis constituent, cannabidiol, seem to be the most “promiscuous” of these compounds. In this article, we review the latest data on the non-CB1, non-CB2 receptors suggested so far for endocannabinoids and plant or synthetic cannabinoids, and lay special emphasis on uncharacterized or orphan G-protein-coupled receptors as well as on transient receptor potential channels.

Journal ArticleDOI
TL;DR: The endocannabinoid system, through CB( 2) receptors, protects against cisplatin-induced kidney damage by attenuating inflammation and oxidative/nitrosative stress, and selective CB(2) agonists may represent a promising novel approach to preventing this devastating complication of chemotherapy.

Journal ArticleDOI
TL;DR: A range of functional assays are used to compare the pharmacological activity of selected cannabinoid ligands, AM251, AM281 and SR141716A with LPI in a HEK293 cell line engineered to stably express recombinant, human GPR55.
Abstract: Background and purpose: Although GPR55 is potently activated by the endogenous lysophospholipid, L-α-lysophosphatidylinositol (LPI), it is also thought to be sensitive to a number of cannabinoid ligands, including the prototypic CB1 receptor antagonists AM251 and SR141716A (Rimonabant®). In this study we have used a range of functional assays to compare the pharmacological activity of selected cannabinoid ligands, AM251, AM281 and SR141716A with LPI in a HEK293 cell line engineered to stably express recombinant, human GPR55.

Journal ArticleDOI
TL;DR: The ability to selectively manipulate physiological functions, through activation of defined signalling cascades, will in all likelihood help in the development of efficacious and safe cannabinoid-based therapeutics for a variety of indications.

Journal ArticleDOI
TL;DR: The overlap between the ligand recognition properties of some TRP channels and proteins of the endocannabinoid system, namely the cannabinoid receptors and the proteins and enzymes catalyzing anandamide cellular re-uptake and hydrolysis, is being actively explored through the rational design and synthesis of new endoc cannabinoidoid-based drugs with multiple mechanisms of action.
Abstract: In the late 1990's, a series of experiments carried out independently in two laboratories led to establish an important connection between the function of the endocannabinoids, which, as exemplified in this special issue, is per se very complex and ubiquitous in animals, and that of the transient receptor potential (TRP) channels, a large family of plasma membrane cation channels involved in several mammalian and non-mammalian physiological and pathological conditions, overlapping only in part with those in which the cannabinoid receptors participate. These experiments were initially based on the observation that the endocannabinoid anandamide and the xenobiotic ligand of TRP channels of V1 type (TRPV1), capsaicin, are somehow chemically similar, both compounds being fatty acid amides, as are also synthetic activators of these channels and inhibitors of anandamide cellular re-uptake. As discussed in this article, the same type of "chemical thoughts" led to the discovery of N-arachidonoyl-dopamine, an endogenous ligand of TRPV1 channels that behaves also an endocannabinoid. The overlap between the ligand recognition properties of some TRP channels and proteins of the endocannabinoid system, namely the cannabinoid receptors and the proteins and enzymes catalyzing anandamide cellular re-uptake and hydrolysis, is being actively explored through the rational design and synthesis of new endocannabinoid-based drugs with multiple mechanisms of action. These aspects are discussed in this review article, together with the possible functional and pharmacological consequences of endocannabinoid-TRP channel interactions.

Journal Article
TL;DR: This review describes the major biochemical properties of FAAH and MAGL, and the design and pharmacological properties of inhibitors of these enzymes, which have demonstrated therapeutic benefit in animal models of several disorders.
Abstract: Apart from their widespread recreational abuse, the psychoactive preparations of the plant Cannabis sativa and its major psychotropic component, Delta9-tetrahydrocannabinol (THC), are also known for their medicinal properties. Following the identification of receptors for THC - the cannabinoid CB1 and CB2 receptors - in mammals, various pharmaceutical strategies have attempted to exploit the properties of the cannabinoid system while minimizing psychotropic side effects. The cloning of the cannabinoid CB1 and CB2 receptors enabled the discovery of the endogenous agonists of the receptors, the endocannabinoids, and eventually led to the identification of enzymes that catalyze endocannabinoid inactivation. Unlike exogenously administered THC and synthetic CB1 and CB2 agonists, the endocannabinoids that are produced endogenously following the onset of several pathologies may act in a site- and time-specific manner to minimize the consequences of such conditions. This observation has suggested the possibility of targeting endocannabinoid-degrading enzymes to prolong the precisely regulated pro-homeostatic action of endocannabinoids. Two major enzymes have been cloned and investigated thoroughly: fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Inhibitors of these enzymes have demonstrated therapeutic benefit in animal models of several disorders, including neuropathic pain, anxiety and inflammatory bowel diseases, as well as against the proliferation and migration of cancer cells. This review describes the major biochemical properties of FAAH and MAGL, and the design and pharmacological properties of inhibitors of these enzymes.

Journal ArticleDOI
TL;DR: It is found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds, which suggests that the taste organ is a peripheral target of endocannabinoids.
Abstract: Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB1 receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB1 receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB1 receptor antagonist, but not by AM630, a CB2 receptor antagonist. Immunohistochemistry shows that CB1 receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.

Journal ArticleDOI
TL;DR: This investigation addressed the question of whether the little‐studied phytocannabinoid, cannabigerol, can activate or block any G protein‐coupled receptor.
Abstract: Background and purpose: Cannabis is the source of at least seventy phytocannabinoids. The pharmacology of most of these has been little investigated, three notable exceptions being Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. This investigation addressed the question of whether the little-studied phytocannabinoid, cannabigerol, can activate or block any G protein-coupled receptor.

Journal ArticleDOI
TL;DR: Major advances both in the characterization of anandamide's and 2-arachidonoylglycerol's biosynthesis and inactivation pathways and in the discovery of pharmacological tools used to interfere with their metabolism have been made and are discussed in this review.