scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome published in 2005"


Journal ArticleDOI
22 Jul 2005-Science
TL;DR: The authors used a tiled microarray approach to identify at high resolution the translational positions of 2278 nucleosomes over 482 kilobases of Saccharomyces cerevisiae DNA.
Abstract: The positioning of nucleosomes along chromatin has been implicated in the regulation of gene expression in eukaryotic cells, because packaging DNA into nucleosomes affects sequence accessibility. We developed a tiled microarray approach to identify at high resolution the translational positions of 2278 nucleosomes over 482 kilobases of Saccharomyces cerevisiae DNA, including almost all of chromosome III and 223 additional regulatory regions. The majority of the nucleosomes identified were well-positioned. We found a stereotyped chromatin organization at Pol II promoters consisting of a nucleosome-free region approximately 200 base pairs upstream of the start codon flanked on both sides by positioned nucleosomes. The nucleosome-free sequences were evolutionarily conserved and were enriched in poly-deoxyadenosine or poly-deoxythymidine sequences. Most occupied transcription factor binding motifs were devoid of nucleosomes, strongly suggesting that nucleosome positioning is a global determinant of transcription factor access.

1,060 citations


Journal ArticleDOI
TL;DR: Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences, and gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far are found.
Abstract: Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes-independently of their gene density-were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.

801 citations


Journal ArticleDOI
01 Oct 2005-Genetics
TL;DR: This comparative analysis allowed the identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be duplicated and rearranged to generate the present-day B. napus genome.
Abstract: Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be duplicated and rearranged to generate the present-day B. napus genome. The conserved regions extended over lengths as great as 50 cM in the B. napus genetic map, equivalent to ∼9 Mb of contiguous sequence in the Arabidopsis genome. There was also evidence for conservation of chromosome landmarks, particularly centromeric regions, between the two species. The observed segmental structure of the Brassica genome strongly suggests that the extant Brassica diploid species evolved from a hexaploid ancestor. The comparative map assists in exploiting the Arabidopsis genomic sequence for marker and candidate gene identification within the larger, intractable genomes of the Brassica polyploids.

554 citations


Journal ArticleDOI
TL;DR: It is shown that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis, which impacts on the interpretation of the relationship between synaptic errors and sterility in mammals and extends the understanding of the biology of Brca1.
Abstract: In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.

499 citations


Journal ArticleDOI
07 Oct 2005-Cell
TL;DR: Recent advances in understanding how replication is initiated in metazoans at the correct chromosome positions, at the appropriate time, and only once per cell cycle are discussed.

309 citations


Journal ArticleDOI
TL;DR: Using double-label fluorescence in situ hybridization for the autosome chromosome 21 (chromosome 21 point probes combined with chromosome 21 “paint” probes) and immunocytochemistry and cell sorting, evidence for chromosome gain and loss in the human brain is presented.
Abstract: The mouse brain contains genetically distinct cells that differ with respect to chromosome number manifested as aneuploidy (Rehen et al., 2001); however, the relevance to humans is not known. Here, using double-label fluorescence in situ hybridization for the autosome chromosome 21 (chromosome 21 point probes combined with chromosome 21 “paint” probes), along with immunocytochemistry and cell sorting, we present evidence for chromosome gain and loss in the human brain. Chromosome 21 aneuploid cells constitute ∼4% of the estimated one trillion cells in the human brain and include non-neuronal cells and postmitotic neurons identified by the neuronspecific nuclear protein marker. In comparison, human interphase lymphocytes present chromosome 21 aneuploidy rates of 0.6%. Together, these data demonstrate that human brain cells (both neurons and non-neuronal cells) can be aneuploid and that the resulting genetic mosaicism is a normal feature of the human CNS.

306 citations


Journal ArticleDOI
TL;DR: The results implicate Orc2 protein in chromosome duplication, chromosome structure and centrosome copy number control, suggesting that it coordinates all stages of the chromosome inheritance cycle.
Abstract: The initiation of DNA replication in S phase requires the prior assembly of an origin recognition complex (ORC)-dependent pre-replicative complex on chromatin during G1 phase of the cell division cycle. In human cells, the Orc2 subunit localized to the nucleus as expected, but it also localized to centrosomes throughout the entire cell cycle. Furthermore, Orc2 was tightly bound to heterochromatin and heterochromatin protein 1α (HP1α) and HP1β in G1 and early S phase, but during late S, G2 and M phases tight chromatin association was restricted to centromeres. Depletion of Orc2 by siRNA caused multiple phenotypes. A population of cells showed an S-phase defect with little proliferating cell nuclear antigen (PCNA) on chromatin, although MCM proteins remained. Orc2 depletion also disrupted HP1 localization, but not histone-H3-lysine-9 methylation at prominent heterochromatic foci. Another subset of Orc2-depleted cells containing replicated DNA arrested with abnormally condensed chromosomes, failed chromosome congression and multiple centrosomes. These results implicate Orc2 protein in chromosome duplication, chromosome structure and centrosome copy number control, suggesting that it coordinates all stages of the chromosome inheritance cycle.

260 citations


Journal ArticleDOI
TL;DR: In eukaryotes, chromosomal rearrangements, such as inversions, translocations and duplications, are common and range from part of a gene to hundreds of genes as mentioned in this paper.

243 citations


Journal ArticleDOI
09 Dec 2005-Science
TL;DR: The discovery of a checkpoint that monitors synapsis between homologous chromosomes to ensure accurate meiotic segregation is reported, which suggests that this surveillance mechanism is widely conserved.
Abstract: We report the discovery of a checkpoint that monitors synapsis between homologous chromosomes to ensure accurate meiotic segregation. Oocytes containing unsynapsed chromosomes selectively undergo apoptosis even if a germline DNA damage checkpoint is inactivated. This culling mechanism is specifically activated by unsynapsed pairing centers, cis-acting chromosome sites that are also required to promote synapsis in Caenorhabditis elegans. Apoptosis due to synaptic failure also requires the C. elegans homolog of PCH2, a budding yeast pachytene checkpoint gene, which suggests that this surveillance mechanism is widely conserved.

233 citations


Journal ArticleDOI
TL;DR: Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types.
Abstract: Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

222 citations


Journal ArticleDOI
TL;DR: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the2n = 20, 40 species with relatively small genomes.

Journal ArticleDOI
TL;DR: Using genetics, bioinformatics and biochemistry, this work has identified a family of DNA motifs in the E. coli chromosome with KOPS activity that provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process.
Abstract: Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.

Journal ArticleDOI
TL;DR: It is concluded that the barley centromeric repeats are neither sufficient nor obligatory to assemble kinetochores, and the possible formation of a novel centromere in a barley chromosome is discussed.
Abstract: The satellite sequences (AGGGAG)n and Ty3/gypsy-like retrotransposons are known to localize at the barley centromeres. Using a gametocidal system, which induces chromosomal mutations in barley chromosomes added to common wheat, we obtained an isochromosome for the short arm of barley chromosome 7H (7HS) that lacked the barley-specific satellite sequence (AGGGAG)n. Two telocentric derivatives of the isochromosome arose in the progeny: 7HS* with and 7HS** without the pericentromeric C-band. FISH analysis demonstrated that both telosomes lacked not only the barley-specific centromeric (AGGGAG)n repeats and retroelements but also any of the known wheat centromeric tandem repeats, including the 192-bp, 250-bp, and TaiI sequences. Although they lacked these centromeric repeats, 7HS* and 7HS** both showed normal mitotic and meiotic transmission. Translocation of barley centromeric repeats to a wheat chromosome 4A did not generate a dicentric chromosome. Indirect immunostaining revealed that all tested centromere-specific proteins (rice CENH3, maize CENP-C, and putative barley homologues of the yeast kinetochore proteins CBF5 and SKP1) and histone H3 phosphorylated at serines 10 and 28 localized at the centromeric region of 7HS*. We conclude that the barley centromeric repeats are neither sufficient nor obligatory to assemble kinetochores, and we discuss the possible formation of a novel centromere in a barley chromosome.

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: It is shown here that the formation of mitotic chromosomes in the egg context is crucial for adapting differentiated nuclei for early development and suggested that it is an important step in nuclear cloning.

Journal ArticleDOI
TL;DR: The nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Abstract: Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.

Journal ArticleDOI
TL;DR: Using live microscopy, this work examines the relative positions of right and left telomeres of several yeast chromosomes and proposes that yeast chromosomes fold in a Rabl-like conformation, which is proposed stems from the territorial organization of yeast chromosomes.
Abstract: Long-range chromosome organization is known to influence nuclear function. Budding yeast centromeres cluster near the spindle pole body, whereas telomeres are grouped in five to eight perinuclear foci. Using live microscopy, we examine the relative positions of right and left telomeres of several yeast chromosomes. Integrated lac and tet operator arrays are visualized by their respective repressor fused to CFP and YFP in interphase yeast cells. The two ends of chromosomes 3 and 6 interact significantly but transiently, forming whole chromosome loops. For chromosomes 5 and 14, end-to-end interaction is less frequent, yet telomeres are closer to each other than to the centromere, suggesting that yeast chromosomes fold in a Rabl-like conformation. Disruption of telomere anchoring by deletions of YKU70 or SIR4 significantly compromises contact between two linked telomeres. These mutations do not, however, eliminate coordinated movement of telomere (Tel) 6R and Tel6L, which we propose stems from the territorial organization of yeast chromosomes.

Journal ArticleDOI
TL;DR: Evidence is provided for a novel chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei during haploidization of wheat × pearl millet hybrid embryos.
Abstract: Complete uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanisms underlying selective elimination of the paternal chromosomes during the development of wheat (Triticum aestivum) x pearl millet (Pennisetum glaucum) hybrid embryos. All pearl millet chromosomes were eliminated in a random sequence between 6 and 23 d after pollination. Parental genomes were spatially separated within the hybrid nucleus, and pearl millet chromatin destined for elimination occupied peripheral interphase positions. Structural reorganization of the paternal chromosomes occurred, and mitotic behavior differed between the parental chromosomes. We provide evidence for a novel chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei is different, and heterochromatinization and DNA fragmentation of micronucleated pearl millet chromatin is the final step during haploidization.

Journal ArticleDOI
25 Jun 2005-Wormbook
TL;DR: The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression.
Abstract: In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the global, epigenetic regulation of X chromosomes that is maintained throughout the lifetime of hermaphrodites.

Journal ArticleDOI
TL;DR: The data indicate CGH arrays can be used to detect monosomies and trisomies, to predict the sites of chromosome breaks, and to identify chromosomal aberrations that have not been detected with other approaches in C. albicans strains, and highlight the high level of genome instability in laboratory strains exposed to the stress of transformation and counterselection on 5‐fluoro‐orotic acid.
Abstract: Summary Clinical strains of Candida albicans are highly tolerant of aneuploidies and other genome rearrangements. We have used comparative genome hybridization (CGH), in an array format, to analyse the copy number of over 6000 open reading frames (ORFs) in the genomic DNA of C. albicans laboratory strains carry- ing one (CAI-4) to three (BWP17) auxotrophies. We find that during disruption of the HIS1 locus all genes telomeric to HIS1 were deleted and telomeric repeats were added to a 9 nt sequence within the transforming DNA. This deletion occurred in ~ 10% of transformants analysed and was stably maintained through two addi- tional rounds of transformation and counterselection of the transformation marker. In one example, the dele- tion was repaired, apparently via break-induced repli- cation. Furthermore, all CAI-4 strains tested were trisomic for chromosome 2 although this trisomy appears to be unstable, as it is not detected in strains subsequently derived from CAI-4. Our data indicate CGH arrays can be used to detect monosomies and trisomies, to predict the sites of chromosome breaks, and to identify chromosomal aberrations that have not been detected with other approaches in C. albicans strains. Furthermore, they highlight the high level of genome instability in C. albicans laboratory strains exposed to the stress of transformation and coun- terselection on 5-fluoro-orotic acid.

Journal ArticleDOI
TL;DR: The loss of a single telomere can generate a variety of chromosome alterations commonly associated with human cancer, not only on a chromosome that loses its telomeres but also on other chromosomes.
Abstract: Spontaneous telomere loss has been proposed as an important mechanism for initiating the chromosome instability commonly found in cancer cells. We have previously shown that spontaneous telomere loss in a human cancer cell line initiates breakage/fusion/bridge (B/F/B) cycles that continue for many cell generations, resulting in DNA amplification and translocations on the chromosome that lost its telomere. We have now extended these studies to determine the effect of the loss of a single telomere on the stability of other chromosomes. Our study showed that telomere acquisition during B/F/B cycles occurred mainly through translocations involving either the nonreciprocal transfer or duplication of the arms of other chromosomes. Telomere acquisition also occurred through small duplications involving the subtelomeric region of the other end of the same chromosome. Although all of these mechanisms stabilized the chromosome that lost its telomere, they differed in their consequences for the stability of the genome as a whole. Telomere acquisition involving nonreciprocal translocations resulted in the loss of a telomere on the donor chromosome, which consequently underwent additional translocations, isochromosome formation, or complete loss. In contrast, telomere acquisition involving duplications stabilized the genome, although the large duplications created substantial allelic imbalances. Thus, the loss of a single telomere can generate a variety of chromosome alterations commonly associated with human cancer, not only on a chromosome that loses its telomere but also on other chromosomes. Factors promoting telomere loss are therefore likely to have an important role in generating the karyotype evolution associated with human cancer.

Book ChapterDOI
TL;DR: This work has shown that in interphase cells chromosomes are organized in a radial distribution with the most gene-dense chromosomes toward the center of the nucleus, which facilitates cellular functions to occur in an efficient and ordered fashion.
Abstract: Mammalian cells package their DNA into chromatin and arrange it in the nucleus as chromosomes. In interphase cells chromosomes are organized in a radial distribution with the most gene-dense chromosomes toward the center of the nucleus. Gene transcription, replication, and repair are influenced by the underlying chromatin architecture, which in turn is affected by the formation of chromosome territories. This arrangement in the nucleus presumably facilitates cellular functions to occur in an efficient and ordered fashion and exploring the link between transcription and nuclear organization will be an exciting area of further research.

Journal ArticleDOI
TL;DR: High‐density array‐comparative genomic hybridization analysis of 108 gliomas shows two distinct types of 1p deletions that predict longer overall and progression‐free survival and a pejorative prognostic value.
Abstract: Deletion of the short arm of chromosome 1 (1p) is considered a favorable prognostic factor in glial tumors. High-density array-comparative genomic hybridization analysis of 108 gliomas shows two distinct types of 1p deletions. Complete hemizygous losses of 1p, which are tightly associated with 19q loss and oligodendroglial phenotype, and partial 1p deletions mainly observed in astrocytic tumors and not associated with 19q loss. Whereas the first type predicts longer overall and progression-free survival (p < 0.0001), the second type has a pejorative prognostic value. Complete 1p-arm evaluation therefore is required to appreciate the real clinical significance of 1p loss in gliomas.

Journal ArticleDOI
TL;DR: The prevalence of the two-chromosome configuration was investigated in 34 species of vibrios and closely related species and suggests that the structure of the small chromosome is more flexible than that of the large chromosome during the evolution of vibRIos.
Abstract: The prevalence of the two-chromosome configuration was investigated in 34 species of vibrios and closely related species. Pulsed-field gel electrophoresis of undigested genomic DNA suggested that vibrios commonly have two chromosomes. The size of the large chromosome is predominantly within a narrow range (3.0 to 3.3 Mb), whereas the size of the small chromosome varies considerably among the vibrios (0.8 to 2.4 Mb). This fact suggests that the structure of the small chromosome is more flexible than that of the large chromosome during the evolution of vibrios.

Journal ArticleDOI
01 Aug 2005-Genetics
TL;DR: It is demonstrated that triploids of A. thaliana are fertile, producing a swarm of different aneuploids, and can readily form tetraploids and function as bridges between euploid types.
Abstract: Polyploidy, the inheritance of more than two genome copies per cell, has played a major role in the evolution of higher plants. Little is known about the transition from diploidy to polyploidy but in some species, triploids are thought to function as intermediates in this transition. In contrast, in other species triploidy is viewed as a block. We investigated the responses of Arabidopsis thaliana to triploidy. The role of genetic variability was tested by comparing triploids generated from crosses between Col-0, a diploid, and either a natural autotetraploid (Wa-1) or an induced tetraploid of Col-0. In this study, we demonstrate that triploids of A. thaliana are fertile, producing a swarm of different aneuploids. Propagation of the progeny of a triploid for a few generations resulted in diploid and tetraploid cohorts. This demonstrated that, in A. thaliana, triploids can readily form tetraploids and function as bridges between euploid types. Genetic analysis of recombinant inbred lines produced from a triploid identified a locus on chromosome I exhibiting allelic bias in the tetraploid lines but not in the diploid lines. Thus, genetic variation was subject to selection contingent on the final ploidy and possibly acting during the protracted aneuploid phase.

Journal ArticleDOI
TL;DR: Induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.
Abstract: Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.

Journal ArticleDOI
TL;DR: Elucidation of the genetic basis of the non-apoB FHBL could uncover attractive targets for lipid-lowering therapy and ‘Knock-in’ mouse models of apoB truncations resemble human FH BL phenotypes.
Abstract: Familial hypobetalipoproteinemia (FHBL), an autosomal dominant disorder, is defined as <5th percentile LDL-cholesterol or apolipoprotein (apo) B in the plasma. FHBL subjects are generally heterozygous and asymptomatic. Three genetic forms exist: (i) premature stop codon specifying mutations of APOB; (ii) FHBL linked to a susceptibility locus on the chromosome 3p21; and (iii) FHBL linked neither to APOB nor to the chromosome 3p21. In heterozygous apoB-defective FHBL, the hepatic VLDL export system is defective because apoB 100, the product of the normal allele, is produced at ∼5% of normal rate, and truncated apoB is cleared too rapidly. The reduced capacity for hepatic triglyceride export increases hepatic fat three-fold. Indexes of adiposity and insulin action are similar to controls. ‘Knock-in’ mouse models of apoB truncations resemble human FHBL phenotypes. Liver fat in the chromosome 3p21-linked FHBL is normal. Elucidation of the genetic basis of the non-apoB FHBL could uncover attractive targets for lipid-lowering therapy. (See note added in proof.)

Journal ArticleDOI
TL;DR: The present paper confirms that 61.8% of the oocytes tested by fluorescent probes specific for chromosomes 13, 16, 18, 21 and 22 are abnormal, representing predominantly chromatid errors, which are the major source of aneuploidy in the resulting embryos.
Abstract: It was previously shown that more than half of the human oocytes obtained from IVF patients of advanced reproductive age are aneuploid, due to meiosis I and meiosis II errors. The present paper furthe

Journal ArticleDOI
TL;DR: This study shows that systematic genetic screens are a powerful means to discover roles for uncharacterized genes and genes with alternative functions in chromosome maintenance that may not be discovered by using proteomics approaches.
Abstract: Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosome stability by performing genome-wide screens employing synthetic genetic array methodology. Two genetic approaches (a series of synthetic lethal and synthetic dosage lethal screens) isolated 211 nonessential deletion mutants that were unable to tolerate defects in kinetochore function. Although synthetic lethality and synthetic dosage lethality are thought to be based upon similar genetic principles, we found that the majority of interactions associated with these two screens were nonoverlapping. To functionally characterize genes isolated in our screens, a secondary screen was performed to assess defects in chromosome segregation. Genes identified in the secondary screen were enriched for genes with known roles in chromosome segregation. We also uncovered genes with diverse functions, such as RCS1, which encodes an iron transcription factor. RCS1 was one of a small group of genes identified in all three screens, and we used genetic and cell biological assays to confirm that it is required for chromosome stability. Our study shows that systematic genetic screens are a powerful means to discover roles for uncharacterized genes and genes with alternative functions in chromosome maintenance that may not be discovered by using proteomics approaches.

Journal ArticleDOI
TL;DR: The existence of multipartite prokaryotic genomes raises several questions regarding how multiple chromosomes are replicated and segregated during the cell cycle, with particular emphasis on the cholera pathogen Vibrio cholerae.
Abstract: Historically, the prokaryotic genome was assumed to consist of a single circular replicon. However, as more microbial genome sequencing projects are completed, it is becoming clear that multipartite genomes comprised of more than one chromosome are not unusual among prokaryotes. Chromosomes are distinguished from plasmids by the presence of essential genes as well as characteristic cell cycle-linked replication kinetics; unlike plasmids, chromosomes initiate replication once per cell cycle. The existence of multipartite prokaryotic genomes raises several questions regarding how multiple chromosomes are replicated and segregated during the cell cycle. These divided genomes also introduce questions regarding chromosome evolution and genome stability. In this review, we discuss these and other issues, with particular emphasis on the cholera pathogen Vibrio cholerae.

Journal ArticleDOI
TL;DR: The recombination and mutation studies suggest that Sr31, Lr26 and Yr9 are separate closely-linked genes, and the genetic stocks and DNA markers generated from this study should facilitate the future cloning of Sr31.
Abstract: The stem, leaf and stripe rust resistance genes Sr31, Lr26 and Yr9, located on the short arm of rye chromosome 1, have been widely used in wheat by means of wheat-rye translocation chromosomes. Previous studies have suggested that these resistance specificities are encoded by either closely-linked genes, or by a single gene capable of recognizing all three rust species. To investigate these issues, two 1BL·1RS wheat lines, one with and one without Sr31, Lr26 and Yr9, were used as parents for a high-resolution F2 mapping family. Thirty-six recombinants were identified between two PCR markers 2.3 cM apart that flanked the resistance locus. In one recombinant, Lr26 was separated from Sr31 and Yr9. Mutation studies recovered mutants that separated all three rust resistance genes. Thus, together, the recombination and mutation studies suggest that Sr31, Lr26 and Yr9 are separate closely-linked genes. An additional 16 DNA markers were mapped in this region. Multiple RFLP markers, identified using part of the barley Mla powdery mildew resistance gene as probe, co-segregated with Sr31 and Yr9. One deletion mutant that had lost Sr31, Lr26 and Yr9 retained all Mla markers, suggesting that the family of genes on 1RS identified by the Mla probe does not contain the Sr31, Lr26 or Yr9 genes. The genetic stocks and DNA markers generated from this study should facilitate the future cloning of Sr31, Lr26 and Yr9.