scispace - formally typeset
Search or ask a question

Showing papers on "GABAergic published in 2001"


Journal ArticleDOI
TL;DR: Investigation of the GABA system in rodent, primate and human brain and the characterization of changes in specific phenotypic subclasses of interneurons in schizophrenia and bipolar disorder will undoubtedly provide important new insights into how the integration of this transmitter system may be altered in neuropsychiatric disease.

1,063 citations


Journal ArticleDOI
18 May 2001-Cell
TL;DR: GABA acts as a self-limiting trophic factor during neural development by modulating the mRNA levels of KCC2, a K(+)-Cl(-) cotransporter whose expression correlates with the switch.

690 citations


Journal ArticleDOI
TL;DR: Neurons in the DA nuclei thus exhibit a diversity of nAChRs that might differentially modulate reinforcement and motor behavior.
Abstract: Nicotinic acetylcholine receptors (nAChRs) on dopaminergic (DA) and GABAergic (Gaba) projection neurons of the substantia nigra (SN) and ventral tegmental area (VTA) are characterized by single-cell RT-PCR and patch-clamp recordings in slices of rat and wild-type, beta2-/-, alpha4-/-, and alpha7-/- mice. The eight nAChR subunits expressed in these nuclei, alpha3-7 and beta2-4, contribute to four different types of nAChR-mediated currents. Most DA neurons in the SN and VTA express two nAChR subtypes. One is inhibited by dihydro-beta-erythroidine (2 microm), alpha-conotoxin MII (10 nm), and methyllycaconitine (1 nm) but does not contain the alpha7 subunit; it possesses a putative alpha4alpha6alpha5(beta2)(2) composition. The other subtype is inhibited by dihydro-beta-erythroidine (2 microm) and has a putative alpha4alpha5(beta2)(2) composition. Gaba neurons in the VTA exhibit a third subtype with a putative (alpha4)(2)(beta2)(3) composition, whereas Gaba neurons in the SN have either the putative (alpha4)(2)(beta2)(3) oligomer or the putative alpha4alpha6alpha5(beta2)(2) oligomer. The fourth subtype, a putative (alpha7)(5) homomer, is encountered in less than half of DA and Gaba neurons, in the SN as well as in the VTA. Neurons in the DA nuclei thus exhibit a diversity of nAChRs that might differentially modulate reinforcement and motor behavior.

685 citations


Journal ArticleDOI
TL;DR: Gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation when this balance is perturbed, seizures may ensue.
Abstract: gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. When this balance is perturbed, seizures may ensue. GABA is formed within GABAergic axon terminals and released into the synapse, where it acts at one of two types of receptor: GABAA, which controls chloride entry into the cell, and GABAB, which increases potassium conductance, decreases calcium entry, and inhibits the presynaptic release of other transmitters. GABAA-receptor binding influences the early portion of the GABA-mediated inhibitory postsynaptic potential, whereas GABAB binding influences the late portion. GABA is rapidly removed by uptake into both glia and presynaptic nerve terminals and then catabolized by GABA transaminase. Experimental and clinical study evidence indicates that GABA has an important role in the mechanism and treatment of epilepsy: (a) Abnormalities of GABAergic function have been observed in genetic and acquired animal models of epilepsy; (b) Reductions of GABA-mediated inhibition, activity of glutamate decarboxylase, binding to GABAA and benzodiazepine sites, GABA in cerebrospinal fluid and brain tissue, and GABA detected during microdialysis studies have been reported in studies of human epileptic brain tissue; (c) GABA agonists suppress seizures, and GABA antagonists produce seizures; (d) Drugs that inhibit GABA synthesis cause seizures; and (e) Benzodiazepines and barbiturates work by enhancing GABA-mediated inhibition. Finally, drugs that increase synaptic GABA are potent anticonvulsants. Two recently developed antiepileptic drugs (AEDs), vigabatrin (VGB) and tiagabine (TGB), are examples of such agents. However, their mechanisms of action are quite different (VGB is an irreversible suicide inhibitor of GABA transaminase, whereas TGB blocks GABA reuptake into neurons and glia), which may account for observed differences in drug side-effect profile.

671 citations


Journal ArticleDOI
TL;DR: It is proposed that these anatomical and physiological features, characteristic of CB1 receptors in several forebrain regions, represent the neuronal substrate for endocannabinoids involved in retrograde synaptic signaling and may explain some of the emotionally relevant behavioral effects of cannabinoid exposure.
Abstract: Cannabinoids are the most popular illicit drugs used for recreational purposes worldwide. However, the neurobiological substrate of their mood-altering capacity has not been elucidated so far. Here we report that CB1 cannabinoid receptors are expressed at high levels in certain amygdala nuclei, especially in the lateral and basal nuclei, but are absent in other nuclei (e.g., in the central nucleus and in the medial nucleus). Expression of the CB1 protein was restricted to a distinct subpopulation of GABAergic interneurons corresponding to large cholecystokinin-positive cells. Detailed electron microscopic investigation revealed that CB1 receptors are located presynaptically on cholecystokinin-positive axon terminals, which establish symmetrical GABAergic synapses with their postsynaptic targets. The physiological consequence of this particular anatomical localization was investigated by whole-cell patch-clamp recordings in principal cells of the lateral and basal nuclei. CB1 receptor agonists WIN 55,212-2 and CP 55,940 reduced the amplitude of GABA(A) receptor-mediated evoked and spontaneous IPSCs, whereas the action potential-independent miniature IPSCs were not significantly affected. In contrast, CB1 receptor agonists were ineffective in changing the amplitude of IPSCs in the rat central nucleus and in the basal nucleus of CB1 knock-out mice. These results suggest that cannabinoids target specific elements in neuronal networks of given amygdala nuclei, where they presynaptically modulate GABAergic synaptic transmission. We propose that these anatomical and physiological features, characteristic of CB1 receptors in several forebrain regions, represent the neuronal substrate for endocannabinoids involved in retrograde synaptic signaling and may explain some of the emotionally relevant behavioral effects of cannabinoid exposure.

634 citations


Journal ArticleDOI
TL;DR: It is shown that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and proposed to rename the protein VGLut2, which is highly enriched in synaptic vesicles.
Abstract: Glutamate is the major excitatory neurotransmitter in mammalian CNS. In the presynaptic nerve terminal, glutamate is stored in synaptic vesicles and released by exocytosis. Previously, it has been shown that a transport protein originally identified as a brain-specific Na-dependent inorganic phosphate transporter I (BNPI) functions as vesicular glutamate transporter and thus has been renamed VGLUT1. Recently, a protein highly homologous to VGLUT1, “differentiation-associated BNPI” (DNPI), has been discovered. Northern blot and in situ hybridization analyses indicate that DNPI mRNA is expressed in some brain regions in which VGLUT1 mRNA is not expressed. We now show that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and propose to rename the protein VGLUT2. VGLUT2 is highly enriched in synaptic vesicles. Furthermore, VGLUT2 resides on a vesicle population that is distinct from vesicles containing the vesicular GABA transporter or VGLUT1, showing that the expression of VGLUT1 and VGLUT2 do not overlap. When VGLUT2 was expressed in BON cells, membrane fractions displayed ATPdependent, carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive glutamate uptake. Overexpression of VGLUT2 in cultured autaptic GABAergic neurons yielded postsynaptic currents that were insensitive to the GABAA receptor antagonist bicuculline but blocked by the AMPA-receptor antagonist 2,3dihydroxy-6-nitro-7-sulfonyl-benzo[F]quinoxaline. Thus, expression of VGLUT2 suffices to cause GABAergic neurons to release glutamate in addition to GABA in a manner very similar to that reported previously for VGLUT1.

503 citations


Journal ArticleDOI
TL;DR: D1 and D2 receptors regulated GABAergic activity in opposite manners and through different mechanisms in prefrontal cortex (PFC) pyramidal cells, which could have important implications for the computational properties of active PFC networks.
Abstract: Dopamine regulates the activity of neural networks in the prefrontal cortex that process working memory information, but its precise biophysical actions are poorly understood. The present study characterized the effects of dopamine on GABAergic inputs to prefrontal pyramidal neurons using whole-cell patch-clamp recordings in vitro. In most pyramidal cells, dopamine had a temporally biphasic effect on evoked IPSCs, producing an initial abrupt decrease in amplitude followed by a delayed increase in IPSC amplitude. Using receptor subtype-specific agonists and antagonists, we found that the initial abrupt reduction was D2 receptor-mediated, whereas the late, slower developing enhancement was D1 receptor-mediated. Linearly combining the effects of the two agonists could reproduce the biphasic dopamine effect. Because D1 agonists enhanced spontaneous (sIPSCs) but did not affect miniature (mIPSCs) IPSCs, it appears that D1 agonists caused larger evoked IPSCs by increasing the intrinsic excitability of interneurons and their axons. In contrast, D2 agonists had no effects on sIPSCs but did produce a significant reduction in mIPSCs, suggestive of a decrease in GABA release probability. In addition, D2 agonists reduced the postsynaptic response to a GABA(A) agonist. D1 and D2 receptors therefore regulated GABAergic activity in opposite manners and through different mechanisms in prefrontal cortex (PFC) pyramidal cells. This bidirectional modulation could have important implications for the computational properties of active PFC networks.

502 citations


Journal ArticleDOI
TL;DR: The receptors underlying the tonic current are functionally and pharmacologically distinct from quantally activated synaptic receptors and these receptors represent a novel target for neurodepressive drugs.
Abstract: gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter, activates a persistent low amplitude tonic current in several brain regions in addition to conventional synaptic currents. Here we demonstrate that GABA(A) receptors mediating the tonic current in hippocampal neurons exhibit functional and pharmacological properties different from those of quantal synaptic currents. Patch-clamp techniques were used to characterize miniature inhibitory postsynaptic currents (mIPSCs) and the tonic GABAergic current recorded in CA1 pyramidal neurons in rat hippocampal slices and in dissociated neurons grown in culture. The competitive GABA(A) receptor antagonists, bicuculline and picrotoxin, blocked both the mIPSCs and the tonic current. In contrast, mIPSCs but not the tonic current were inhibited by gabazine (SR-95531). Coapplication experiments and computer simulations revealed that gabazine bound to the receptors responsible for the tonic current but did not prevent channel activation. However, gabazine competitively inhibited bicuculline blockade. The unitary conductance of the GABA(A) receptors underlying the tonic current (approximately 6 pS) was less than the main conductance of channels activated during quantal synaptic transmission (approximately 15--30 pS). Furthermore, compounds that potentiate GABA(A) receptor function including the benzodiazepine, midazolam, and anesthetic, propofol, prolonged the duration of mIPSCs and increased tonic current amplitude in cultured neurons to different extents. Clinically-relevant concentrations of midazolam and propofol caused a greater increase in tonic current compared with mIPSCs, as measured by total charge transfer. In summary, the receptors underlying the tonic current are functionally and pharmacologically distinct from quantally activated synaptic receptors and these receptors represent a novel target for neurodepressive drugs.

375 citations


Journal ArticleDOI
22 Jun 2001-Science
TL;DR: Using paired recordings in rat neocortical slices, it is found that the firing of fast-spiking cells can reflect the spiking pattern of single-axon pyramidal inputs, and this property allowed groups ofFast-Spiking cells interconnected by electrical and γ-aminobutyric acid (GABA)–releasing ( GABAergic) synapses to detect the relative timing of their excitatory inputs.
Abstract: The temporal pattern and relative timing of action potentials among neocortical neurons may carry important information. However, how cortical circuits detect or generate coherent activity remains unclear. Using paired recordings in rat neocortical slices, we found that the firing of fast-spiking cells can reflect the spiking pattern of single-axon pyramidal inputs. Moreover, this property allowed groups of fast-spiking cells interconnected by electrical and γ-aminobutyric acid (GABA)–releasing (GABAergic) synapses to detect the relative timing of their excitatory inputs. These results indicate that networks of fast-spiking cells may play a role in the detection and promotion of synchronous activity within the neocortex.

354 citations


Journal ArticleDOI
TL;DR: Data from single concentration ligand binding studies indicate that the GABAergic receptor system is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism.
Abstract: Neuropathological studies in autistic brains have shown small neuronal size and increased cell packing density in a variety of limbic system structures including the hippocampus, a change consistent with curtailment of normal development. Based on these observations in the hippocampus, a series of quantitative receptor autoradiographic studies were undertaken to determine the density and distribution of eight types of neurotransmitter receptors from four neurotransmitter systems (GABAergic, serotoninergic [5-HT], cholinergic, and glutamatergic). Data from these single concentration ligand binding studies indicate that the GABAergic receptor system (3[H]-flunitrazepam labeled benzodiazepine binding sites and 3[H]-muscimol labeled GABAA receptors) is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism. In contrast, the density and distribution of the other six receptors studied (3[H]-8OH-DPAT labeled 5-HT1A receptors, 3[H]-ketanserin labeled 5-HT2 receptors, 3[H]-pirenzepine labled M1 receptors, 3[H]-hemicholinium labeled high affinity choline uptake sites, 3[H]-MK801 labeled NMDA receptors, and 3[H]-kainate labeled kainate receptors) in the hippocampus did not demonstrate any statistically significant differences in binding.

322 citations


Journal ArticleDOI
TL;DR: Evidence for the role of γ‐aminobutyric acid (GABA) neurotransmission in cerebral ischemia‐induced neuronal death and how dysfunction of GABA neurotransmission may contribute to neuronal death are presented and how neuronal death can be prevented by GABAergic drugs are discussed.
Abstract: In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.

Journal ArticleDOI
TL;DR: ACh released by the animal placed in a novel environment seems to have two components, one related to motor activity and onerelated to attention, anxiety and fear, which disappears in the familiar environment, where ACh release is directly related toMotor activity.

Journal ArticleDOI
TL;DR: The findings suggest that adenosine may play an important role in modulating excitatory input to striatal neurons and that A2AR may modulate GABAergic signaling at several cellular sites within the rat striatum.
Abstract: Activation of adenosine A2A receptors (A2AR) has been shown to antagonize the function of D2 dopaminergic regulation of striatal gamma-aminobutyric acid (GABA)-ergic output and, thus, locomotor activity. Adenosine A2A receptor immunoreactivity (A2A-LI) has been localized to rat striatum by light microscopy by using a previously characterized human A2AR monoclonal antibody. In this study, we evaluated the localization of A2A-LI and its colocalization with GABA immunoreactivity (GABA-LI) in dorsolateral rat striatum by immunoelectron microscopy to further characterize the potential mechanism of purinergic control of striatal output. Ultrastructural analysis demonstrated A2A-LI associated with the plasma membrane and cytoplasmic membranous structures of striatal neurons. A2A-LI was prevalent in dendrites and dendritic spines ( approximately 70% of total A2A-profiles counted) and less prevalent in axons and axon terminals (23%), soma (3%), and glia (3%). Cellular elements exhibiting both A2A-LI and GABA-LI comprised 23% of the total profiles counted; colabeling was most common in dendrites. A2A-LI was observed primarily at asymmetric synapses (n = 70) (both pre- and postsynaptically but predominantly in the postsynaptic element) and less frequently at symmetric synapses (n = 17). Of the 714 A2A-immunoreactive profiles examined, 37% were apposed to GABA-labeled profiles. The most common appositions were A2A-labeled dendrites apposed to GABA-immunoreactive dendrites (n = 132), axon terminals (n = 28), and somata (n = 22) and A2A-labeled axons apposed to GABA-labeled dendrites (n = 58), axon terminals (n = 14), and somata (n = 9). Our findings suggest that adenosine may play an important role in modulating excitatory input to striatal neurons and that A2AR may modulate GABAergic signaling at several cellular sites within the rat striatum.

Journal ArticleDOI
TL;DR: The demonstration that muscimol elicits positive eating behavior from rostral shell versus negative defensive behavior from caudal shell suggests in particular that GABAergic substrates of positive and negative types of motivated behavior in the nucleus accumbens shell are segregated along a rostrocaudal gradient.
Abstract: This study examined localization of positive versus negative motivational functions mediated by GABA circuits within the accumbens shell. Microinjections of a GABA(A) agonist (0, 25, 75, and 225 ng/0.5 microl muscimol) in rostral shell sites elicited appetitive increases in eating behavior. In contrast, microinjections in caudal shell sites elicited defensive burying or paw-treading behavior. Rats whose microinjections landed bilaterally outside of the accumbens shell did not display either behavior. Defensive treading elicited by caudal shell muscimol microinjection appeared to be a negative motivated response to threat (similar in parameters and orientation to normal defensive burying of a threatening electrified shock prod). The nucleus accumbens shell thus appears functionally heterogeneous in coding motivational valence. The demonstration that muscimol elicits positive eating behavior from rostral shell versus negative defensive behavior from caudal shell suggests in particular that GABAergic substrates of positive and negative types of motivated behavior in the nucleus accumbens shell are segregated along a rostrocaudal gradient.

Journal ArticleDOI
TL;DR: It is found that brain‐derived neurotrophic factor (BDNF) acts postsynaptically to reduce γ‐aminobutyric acid (GABA)‐ergic function and is responsible for the decline in GABAergic mIPSC amplitudes.
Abstract: Changes in neurotransmitter receptor density at the synapse have been proposed as a mechanism underlying synaptic plasticity. Neurotrophic factors are known to influence synaptic strength rapidly. In the present study, we found that brain-derived neurotrophic factor (BDNF) acts postsynaptically to reduce gamma-aminobutyric acid (GABA)-ergic function. Using primary cultures of rat hippocampal neurons, we investigated the effects of BDNF on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on the localization of GABAA receptors. Application of BDNF (100 ng/mL) led within minutes to a marked reduction (33.5%) of mIPSC amplitudes in 50% of neurons, recorded in the whole-cell patch-clamp mode, leaving frequency and decay kinetics unaffected. This effect was blocked by the protein kinase inhibitor K252a, which binds with high affinity to trkB receptors. Immunofluorescence staining with an antibody against trkB revealed that about 70% of cultured hippocampal pyramidal cells express trkB. In dual labelling experiments, use of neurobiotin injections to label the recorded cells revealed that all cells responsive to BDNF were immunopositive for trkB. Treatment of cultures with BDNF reduced the immunoreactivity for the GABAA receptor subunits-alpha2, -beta2,3 and -gamma2 in the majority of neurons. This effect was detectable after 15 min and lasted at least 12 h. Neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), also reduced GABAA receptor immunoreactivity, supporting the proposal that this effect is mediated by trkB. Altogether the results suggest that exposure to BDNF induces a rapid reduction in postsynaptic GABAA receptor number that is responsible for the decline in GABAergic mIPSC amplitudes.

Journal ArticleDOI
TL;DR: It is demonstrated that GABARAP, which immunoprecipitates with GABA(A) receptors, is not found at significant levels within inhibitory synapses, but is enriched within the Golgi apparatus and postsynaptic cisternae, suggesting an important role in the production of GABAergic synapses.

Journal ArticleDOI
TL;DR: The template of early hippocampal network development is conserved across the mammalian evolution but that it is shifted toward fetal life in primate.
Abstract: Morphological studies suggest that the primate hippocampus develops extensively before birth, but little is known about its functional development Patch-clamp recordings of hippocampal neurons and reconstruction of biocytin-filled pyramidal cells were performed in slices of macaque cynomolgus fetuses delivered by cesarean section We found that during the second half of gestation, axons and dendrites of pyramidal cells grow intensively by hundreds of micrometers per day to attain a high level of maturity near term Synaptic currents appear around midgestation and are correlated with the level of morphological differentiation of pyramidal cells: the first synapses are GABAergic, and their emergence correlates with the growth of apical dendrite into stratum radiatum A later occurrence of glutamatergic synaptic currents correlates with a further differentiation of the axodendritic tree and the appearance of spines Relying on the number of dendritic spines, we estimated that hundreds of new glutamatergic synapses are established every day on a pyramidal neuron during the last third of gestation Most of the synaptic activity is synchronized in spontaneous slow ( approximately 01 Hz) network oscillations reminiscent of the giant depolarizing potentials in neonatal rodents Epileptiform discharges can be evoked by the GABA(A) receptor antagonist bicuculline by the last third of gestation, and postsynaptic GABA(B) receptors contribute to the termination of epileptiform discharges Comparing the results obtained in primates and rodents, we conclude that the template of early hippocampal network development is conserved across the mammalian evolution but that it is shifted toward fetal life in primate

Journal ArticleDOI
TL;DR: GA-mediated transmission is characterized by high variability of synaptic responses, and factors that determine synaptic GABA transients in the cleft, including diffusion and the actions of GABA transporters are investigated.

Journal ArticleDOI
TL;DR: The hippocampus, a limbic brain region involved in the encoding and retrieval of memory, has a well-defined structural network assembled from excitatory principal neurons and inhibitory interneuron...
Abstract: The hippocampus, a limbic brain region involved in the encoding and retrieval of memory, has a well-defined structural network assembled from excitatory principal neurons and inhibitory interneuron...

Journal ArticleDOI
TL;DR: The results indicate that the disruption of GABA(A) receptor-mediated synaptic inhibition of GABAergic interneurons and the augmentation of IPSCs in principal cells result in increased network oscillations in the OB with complex effects on olfactory discrimination, which can be explained by an increase in the size or effective power of oscillating neural cell assemblies among the mitral cells of beta3-/- mice.
Abstract: Synchronized neural activity is believed to be essential for many CNS functions, including neuronal development, sensory perception, and memory formation. In several brain areas GABA(A) receptor-mediated synaptic inhibition is thought to be important for the generation of synchronous network activity. We have used GABA(A) receptor beta3 subunit deficient mice (beta3-/-) to study the role of GABAergic inhibition in the generation of network oscillations in the olfactory bulb (OB) and to reveal the role of such oscillations in olfaction. The expression of functional GABA(A) receptors was drastically reduced (>93%) in beta3-/- granule cells, the local inhibitory interneurons of the OB. This was revealed by a large reduction of muscimol-evoked whole-cell current and the total current mediated by spontaneous, miniature inhibitory postsynaptic currents (mIPSCs). In beta3-/- mitral/tufted cells (principal cells), there was a two-fold increase in mIPSC amplitudes without any significant change in their kinetics or frequency. In parallel with the altered inhibition, there was a significant increase in the amplitude of theta (80% increase) and gamma (178% increase) frequency oscillations in beta3-/- OBs recorded in vivo from freely moving mice. In odor discrimination tests, we found beta3-/- mice to be initially the same as, but better with experience than beta3+/+ mice in distinguishing closely related monomolecular alcohols. However, beta3-/- mice were initially better and then worse with practice than control mice in distinguishing closely related mixtures of alcohols. Our results indicate that the disruption of GABA(A) receptor-mediated synaptic inhibition of GABAergic interneurons and the augmentation of IPSCs in principal cells result in increased network oscillations in the OB with complex effects on olfactory discrimination, which can be explained by an increase in the size or effective power of oscillating neural cell assemblies among the mitral cells of beta3-/- mice.

Journal ArticleDOI
TL;DR: The results indicate that pyramidal cells have mechanisms to target GABAA receptors, under presynaptic influence, preferentially to distinct synapses.
Abstract: Pyramidal cells, expressing at least 14 subunits of the heteropentameric GABA(A) receptor, receive GABAergic input on their soma and proximal dendrites from basket cells, activating GABA(A) receptors and containing either parvalbumin or cholecystokinin and vasoactive intestinal polypeptide. The properties of GABA(A) receptors are determined by the subunit composition, and synaptic receptor content governs the effect of the presynaptic neuron. Using a quantitative electron microscopic immunogold technique, we tested whether the synapses formed by the two types of basket cell show a difference in the subunit composition of GABA(A) receptors. Terminals of one of the basket cells were identified by antibodies to parvalbumin. Synapses made by parvalbumin-negative terminals showed five times more immunoreactivity for the alpha(2) subunit than synapses made by parvalbumin-positive basket cells, whose synapses were frequently immunonegative. This difference is likely to be due to specific GABA(A) receptor alpha subunit composition, because neither synaptic size nor immunoreactivity for the beta(2/3) subunits, indicating total receptor content, was different in these two synapse populations. Synapses established by axo-axonic cells on axon initial segments showed an intermediate number of immunoparticles for the alpha(2) subunit compared to those made by basket cells but, due to their smaller size, the density of the alpha(2) subunit immunoreactivity was higher in synapses on the axon. Because the two basket cell types innervate the same domain of the pyramidal cell, the results indicate that pyramidal cells have mechanisms to target GABA(A) receptors, under presynaptic influence, preferentially to distinct synapses. The two basket cell types act via partially distinct GABA(A) receptor populations.

Journal ArticleDOI
TL;DR: It is argued that a down regulation of reelin expression occurring in prefrontal cortex and in every brain structure of schizophrenia patients so far studied may be associated with a decrease in dendritic spine expression that in turn may provide an important reduction of cortical function as documented by the downregulation of glutamic acid decarboxylase67 (GAD67) expression.

Journal ArticleDOI
TL;DR: It is concluded that non-V-shaped response areas can be generated by GABA and glycinergic synapses within the inferior colliculus and do not simply reflect inhibition acting more peripherally in the pathway and frequency-dependent inhibition is an important general feature of the mammalian inferior collculus and not a specialization unique to echolocating bats.
Abstract: The processing of biologically important sounds depends on the analysis of their frequency content by the cochlea and the CNS. GABAergic inhibition in the inferior colliculus shapes frequency response areas in echolocating bats, but a similar role in nonspecialized mammals has been questioned. We used the powerful combination of iontophoresis with detailed analysis of frequency response areas to test the hypothesis that GABAergic and glycinergic inhibition operating in the inferior colliculus of a nonspecialized mammal (guinea pig) shape the frequency responses of neurons in this nucleus. Our analysis reveals two groups of response areas in the inferior colliculus: V-shaped and non-V-shaped. The response as a function of level in neurons with V-shaped response areas can be either monotonic or nonmonotonic. Application of bicuculline or strychnine in these neurons, to block inhibition mediated by GABAA or glycinergic receptors, respectively, increases firing rate primarily within the boundaries of the control response area. In contrast, neurons in the non-V-shaped group have response areas that include narrow, closed, tilted, and double-peaked types. In this group, blockade of GABAA and glycine receptors increases firing rate but also changes response area shape, with most becoming more V-shaped. We conclude that (1) non-V-shaped response areas can be generated by GABA and glycinergic synapses within the inferior colliculus and do not simply reflect inhibition acting more peripherally in the pathway and (2) frequency-dependent inhibition is an important general feature of the mammalian inferior colliculus and not a specialization unique to echolocating bats.

Journal ArticleDOI
TL;DR: Findings suggest that alterations of GABAergic circuits occur early after lithium‐pilocarpine‐induced status epilepticus and contribute to epileptogenesis, and in particular, the reorganization of neurons in the dentate gyrus might contribute to synchronize hyperexcitability induced by the interneuron loss during the silent period.
Abstract: Reorganization of excitatory and inhibitory circuits in the hippocampal formation following seizure-induced neuronal loss has been proposed to underlie the development of chronic seizures in temporal lobe epilepsy (TLE). Here, we investigated whether specific morphological alterations of the GABAergic system can be related to the onset of spontaneous recurrent seizures (SRS) in the rat lithium-pilocarpine model of TLE. Immunohistochemical staining for markers of interneurons and their projections, including parvalbumin (PV), calretinin (CR), calbindin (CB), glutamic acid decarboxylase (GAD), and type 1 GABA transporter (GAT1), was performed in brain sections of rats treated with lithium-pilocarpine and sacrificed after 24 h, during the silent phase (6 and 12 days), or after the onset of SRS (10-18 days after treatment). Semiquantitative analysis revealed a selective loss of interneurons in the stratum oriens of CA1, associated with a reduction of GAT1 staining in the stratum radiatum and stratum oriens. In contrast, interneurons in CA3 were largely preserved, although GAT1 staining was also reduced. These changes occurred within 6 days after treatment and were therefore insufficient to cause SRS. In the dentate gyrus, extensive cell loss occurred in the hilus. The pericellular innervation of granule cells by PV-positive axons was markedly reduced, although the loss of PV-interneurons was only partial. Most strikingly, the density of GABAergic axons, positive for both GAD and GAT1, was dramatically increased in the inner molecular layer. This change emerged during the silent period, but was most marked in animals with SRS. Finally, supernumerary CB-positive neurons were detected in the hilus, selectively in rats with SRS. These findings suggest that alterations of GABAergic circuits occur early after lithium-pilocarpine-induced status epilepticus and contribute to epileptogenesis. In particular, the reorganization of GABAergic axons in the dentate gyrus might contribute to synchronize hyperexcitability induced by the interneuron loss during the silent period, leading to the onset of chronic seizures.

Journal ArticleDOI
TL;DR: The ratio of the decay times of L- IPSCs and of S-IPSCs is a constant value among Golgi cells, indicating that, despite a high cell-to-cell variability of the overall IPSC decay kinetics, postsynaptic Golgi Cells coregulate the kinetics of their two main inhibitory inputs.
Abstract: In the rat cerebellum, Golgi cells receive serotonin-evoked inputs from Lugaro cells (L-IPSCs), in addition to spontaneous inhibitory inputs (S-IPSCs). In the present study, we analyze the pharmacology of these IPSCs and show that S-IPSCs are purely GABAergic events occurring at basket and stellate cell synapses, whereas L-IPSCs are mediated by GABA and glycine. Corelease of the two transmitters at Lugaro cell synapses is suggested by the fact that both GABA(A) and glycine receptors open during individual L-IPSCs. Double immunocytochemical stainings demonstrate that GABAergic and glycinergic markers are coexpressed in Lugaro cell axonal varicosities, together with the mixed vesicular inhibitory amino acid transporter. Lugaro cell varicosities are found apposed to glycine receptor (GlyR) clusters that are localized on Golgi cell dendrites and participate in postsynaptic complexes containing GABA(A) receptors (GABA(A)Rs) and the anchoring protein gephyrin. GABA(A)R and GlyR/gephyrin appear to form segregated clusters within individual postsynaptic loci. Basket and stellate cell varicosities do not face GlyR clusters. For the first time the characteristics of GABA and glycine cotransmission are compared with those of GABAergic transmission at identified inhibitory synapses converging onto the same postsynaptic neuron. The ratio of the decay times of L-IPSCs and of S-IPSCs is a constant value among Golgi cells. This indicates that, despite a high cell-to-cell variability of the overall IPSC decay kinetics, postsynaptic Golgi cells coregulate the kinetics of their two main inhibitory inputs. The glycinergic component of L-IPSCs is responsible for their slower decay, suggesting that glycinergic transmission plays a role in tuning the IPSC kinetics in neuronal networks.

Journal ArticleDOI
01 Mar 2001-Neuron
TL;DR: It is shown that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons, which satisfy the criteria that distinguish mossy fiber-CA3 synapses.

Journal ArticleDOI
TL;DR: The ratio of large-to-small layer I neurons changes differentially, indicating that each class is produced and/or eliminated at a different rate and suggesting that their roles in primates are diverse.
Abstract: Layer I, which plays an important role in the development of the cerebral cortex, expands in size and diversity in primates. We found that, unlike in rodents, in the macaque monkey, neurons of this layer are generated during the entire 2 month period of corticogenesis, within the middle of the 165-d-long gestation. The large, classical Cajal-Retzius cells, immunoreactive to reelin and calretinin but not to GABA, are generated first [embryonic day 38 (E38)-E50], with the peak of [(3)H]thymidine ([(3)H]TdR) labeling at E43. Ultrastructural analysis revealed that processes of these cells form a stereotyped, rectangular network oriented parallel to the pial surface. Genesis of smaller, GABAergic neurons begins slightly later (E43), reaches a peak of [(3)H]TdR labeling between E54 and E70, and continues until the completion of corticogenesis (E94). These late-generated layer I cells are imported from outside sources such as the olfactory primordium and ganglionic eminence and via a massive subpial granular layer that may also supply some GABAergic interneurons to the subjacent cortical plate. The ratio of large-to-small layer I neurons changes differentially, indicating that each class is produced and/or eliminated at a different rate and suggesting that their roles in primates are diverse.

Journal ArticleDOI
01 Feb 2001-Neuron
TL;DR: Activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses and may selectively control the communication between interneurons by increasing their mutual inhibition.

Journal ArticleDOI
TL;DR: Data suggest that hyperpolarization-activated cation current I(h) is active at the resting membrane potential in s.o. interneurons and contributes to the spontaneous activity of these cells and to the tonic inhibition of CA1 pyramidal neurons in the hippocampus.
Abstract: Intrinsic GABAergic interneurons provide inhibitory input to the principal neurons of the hippocampus. The majority of interneurons located in stratum oriens (s.o.) of the CA1 region express the hy...

Journal ArticleDOI
TL;DR: It is demonstrated that 3alpha-reduced neuroactive steroids concurrently modulate the GABA(A) receptor and regulate gene expression via the progesterone receptor after intracellular oxidation, and first studies in patients with panic disorder suggest that neuro active steroids may also play a pivotal role in human anxiety.