scispace - formally typeset
Search or ask a question

Showing papers on "Graphene oxide paper published in 2009"


Journal ArticleDOI
05 Jun 2009-Science
TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Abstract: Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.

10,663 citations


Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations


Journal ArticleDOI
30 Jan 2009-Science
TL;DR: This work illustrates the concept of graphene as a robust atomic-scale scaffold on the basis of which new two-dimensional crystals with designed electronic and other properties can be created by attaching other atoms and molecules.
Abstract: Although graphite is known as one of the most chemically inert materials, we have found that graphene, a single atomic plane of graphite, can react with atomic hydrogen, which transforms this highly conductive zero-overlap semimetal into an insulator. Transmission electron microscopy reveals that the obtained graphene derivative (graphane) is crystalline and retains the hexagonal lattice, but its period becomes markedly shorter than that of graphene. The reaction with hydrogen is reversible, so that the original metallic state, the lattice spacing, and even the quantum Hall effect can be restored by annealing. Our work illustrates the concept of graphene as a robust atomic-scale scaffold on the basis of which new two-dimensional crystals with designed electronic and other properties can be created by attaching other atoms and molecules.

3,735 citations


Journal ArticleDOI
TL;DR: An improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition is reported on, finding that the transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications.
Abstract: Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition. The transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications. The improved transfer processes will also be of great value for the fabrication of electronic devices such as field effect transistor and bilayer pseudospin field effect transistor devices.

3,017 citations


Journal ArticleDOI
Dacheng Wei1, Yunqi Liu1, Yu Wang1, Hongliang Zhang1, Liping Huang1, Gui Yu1 
TL;DR: Electrical measurements show that the N-doped graphene exhibits an n-type behavior, indicating substitutional doping can effectively modulate the electrical properties of graphene.
Abstract: To realize graphene-based electronics, various types of graphene are required; thus, modulation of its electrical properties is of great importance. Theoretic studies show that intentional doping is a promising route for this goal, and the doped graphene might promise fascinating properties and widespread applications. However, there is no experimental example and electrical testing of the substitutionally doped graphene up to date. Here, we synthesize the N-doped graphene by a chemical vapor deposition (CVD) method. We find that most of them are few-layer graphene, although single-layer graphene can be occasionally detected. As doping accompanies with the recombination of carbon atoms into graphene in the CVD process, N atoms can be substitutionally doped into the graphene lattice, which is hard to realize by other synthetic methods. Electrical measurements show that the N-doped graphene exhibits an n-type behavior, indicating substitutional doping can effectively modulate the electrical properties of graphene. Our finding provides a new experimental instance of graphene and would promote the research and applications of graphene.

2,800 citations


Journal ArticleDOI
TL;DR: The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis and produces monolayer graphene films with much larger domain sizes than previously attainable.
Abstract: Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

2,493 citations


Journal ArticleDOI
TL;DR: In this paper, the sheet resistance of graphite oxide film reduced using sodium borohydride (NaBH4) is much lower than that of films reduced using hydrazine (N2H4).
Abstract: The conductivity of graphite oxide films is modulated using reducing agents. It is found that the sheet resistance of graphite oxide film reduced using sodium borohydride (NaBH4) is much lower than that of films reduced using hydrazine (N2H4). This is attributed to the formation of CN groups in the N2H4 case, which may act as donors compensating the hole carriers in reduced graphite oxide. In the case of NaBH4 reduction, the interlayer distance is first slightly expanded by the formation of intermediate boron oxide complexes and then contracted by the gradual removal of carbonyl and hydroxyl groups along with the boron oxide complexes. The fabricated conducting film comprising a NaBH4-reduced graphite oxide reveals a sheet resistance comparable to that of dispersed graphene.

2,075 citations


Journal ArticleDOI
Hui-Lin Guo1, Xian-Fei Wang1, Qingyun Qian1, Feng-Bin Wang1, Xing-Hua Xia1 
19 Aug 2009-ACS Nano
TL;DR: A facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: -1.5 V) is reported.
Abstract: Graphene can be viewed as an individual atomic plane extracted from graphite, as unrolled single-walled carbon nanotube or as an extended flat fullerene molecule. In this paper, a facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: −1.5 V) is reported. This method is green and fast, and will not result in contamination of the reduced material. The electrochemically reduced graphene nanosheets have been carefully characterized by spectroscopic and electrochemical techniques in comparison to the chemically reduced graphene-based product. Particularly, FTIR spectra indicate that a variety of the oxygen-containing functional groups have been thoroughly removed from the graphite oxide plane via electrochemical reduction. The chemically converted materials are not expected to exhibit graphene’s electronic properties because of residual defects. Indeed, th...

2,065 citations


Journal ArticleDOI
TL;DR: The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process, and field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene.
Abstract: The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO(2) wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

2,011 citations


Journal ArticleDOI
08 May 2009-Science
TL;DR: An n-type graphene field-effect transistor that operates at room temperature is fabricated and confirmed the carbon-nitrogen species in graphene thermally annealed in ammonia is covalently functionalized by nitrogen species.
Abstract: Graphene is readily p-doped by adsorbates, but for device applications, it would be useful to access the n-doped material. Individual graphene nanoribbons were covalently functionalized by nitrogen species through high-power electrical joule heating in ammonia gas, leading to n-type electronic doping consistent with theory. The formation of the carbon-nitrogen bond should occur mostly at the edges of graphene where chemical reactivity is high. X-ray photoelectron spectroscopy and nanometer-scale secondary ion mass spectroscopy confirm the carbon-nitrogen species in graphene thermally annealed in ammonia. We fabricated an n-type graphene field-effect transistor that operates at room temperature.

2,006 citations


Journal ArticleDOI
TL;DR: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported in this paper.
Abstract: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported. The residual oxygen content and structure of GO are monitored and these chemical and structural characteristics are correlated to electronic properties of the thin films at various stages of reduction. It is found that the electrical characteristics of reduced GO do not approach those of intrinsic graphene obtained by mechanical cleaving because the material remains significantly oxidized. The residual oxygen forms sp3 bonds with carbon atoms in the basal plane such that the carbon sp2 bonding fraction in fully reduced GO is ∼0.80. The minority sp3 bonds disrupt the transport of carriers delocalized in the sp2 network, limiting the mobility, and conductivity of reduced GO thin films. Extrapolation of electrical conductivity data as a function of oxygen content reveals that complete removal of oxygen should lead to properties that are comparable to graphene.

Journal ArticleDOI
TL;DR: It is reported that homogeneous colloidal suspensions of chemically modified graphene sheets were readily produced in a wide variety of organic solvent systems and "paperlike" materials generated by very simple filtration of the reduced graphene oxide sheets had electrical conductivity values as high as 16,000 S/m.
Abstract: We report that homogeneous colloidal suspensions of chemically modified graphene sheets were readily produced in a wide variety of organic solvent systems. Two different sets of solubility parameters are used to rationalize when stable colloidal suspensions of graphene oxide sheets and, separately, of reduced graphene oxide sheets in a given solvent type are possible and when they are not. As an example of the utility of such colloidal suspensions, “paperlike” materials generated by very simple filtration of the reduced graphene oxide sheets had electrical conductivity values as high as 16 000 S/m.

Journal ArticleDOI
TL;DR: This work used carbon isotope labeling in conjunction with Raman spectroscopic mapping to track carbon during the growth process and shows that at high temperatures sequentially introduced isotopic carbon diffuses into the Ni first, mixes, and then segregates and precipitates at the surface of Ni forming graphene and/or graphite.
Abstract: Large-area graphene growth is required for the development and production of electronic devices. Recently, chemical vapor deposition (CVD) of hydrocarbons has shown some promise in growing large-area graphene or few-layer graphene films on metal substrates such as Ni and Cu. It has been proposed that CVD growth of graphene on Ni occurs by a C segregation or precipitation process whereas graphene on Cu grows by a surface adsorption process. Here we used carbon isotope labeling in conjunction with Raman spectroscopic mapping to track carbon during the growth process. The data clearly show that at high temperatures sequentially introduced isotopic carbon diffuses into the Ni first, mixes, and then segregates and precipitates at the surface of Ni forming graphene and/or graphite with a uniform mixture of 12C and 13C as determined by the peak position of the Raman G-band peak. On the other hand, graphene growth on Cu is clearly by surface adsorption where the spatial distribution of 12C and 13C follows the pre...

Journal ArticleDOI
02 Jun 2009-ACS Nano
TL;DR: This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength and a stable large electrochemical capacitance, which outperforms many other currently available carbon-based flexible electrodes and is hence particularly promising for flexible supercapacitors.
Abstract: Freestanding and flexible graphene/polyaniline composite paper was prepared by an in situ anodic electropolymerization of polyaniline film on graphene paper. This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength of 12.6 MPa and a stable large electrochemical capacitance (233 F g(-1) and 135 F cm(-3) for gravimetric and volumetric capacitances), which outperforms many other currently available carbon-based flexible electrodes and is hence particularly promising for flexible supercapacitors.

Journal ArticleDOI
TL;DR: In this article, a simple, clean, and controlled hydrothermal dehydration route to convert graphene oxide (GO) to stable graphene solution was reported, which has the combined advantages of removing oxygen functional groups from GO and repairing the aromatic structures.
Abstract: This work reports a simple, clean, and controlled hydrothermal dehydration route to convert graphene oxide (GO) to stable graphene solution. The hydrothermally treated GO was characterized using UV−visible absorption spectroscopy, atomic force microscopy, Raman spectroscopy, X-ray photoemission spectroscopy, and solid state 13C NMR spectra. Compared to chemical reduction processes using hydrazine, the present “water-only” route has the combined advantages of removing oxygen functional groups from GO and repairing the aromatic structures. By controlling the hydrothermal temperatures, we can modify the physical properties of GO and obtain tunable optical limiting performance.

Journal ArticleDOI
27 Jan 2009-ACS Nano
TL;DR: The development of useful chemical sensors from chemically converted graphene dispersions using spin coating to create single-layer films on interdigitated electrode arrays with consistent charge transfer mechanism between the analyte and graphene with a limited role of the electrical contacts is reported.
Abstract: We report the development of useful chemical sensors from chemically converted graphene dispersions using spin coating to create single-layer films on interdigitated electrode arrays. Dispersions of graphene in anhydrous hydrazine are formed from graphite oxide. Preliminary results are presented on the detection of NO2, NH3, and 2,4-dinitrotoluene using this simple and scalable fabrication method for practical devices. Current versus voltage curves are linear and ohmic in all cases, studied independent of metal electrode or presence of analytes. The sensor response is consistent with a charge transfer mechanism between the analyte and graphene with a limited role of the electrical contacts. A micro hot plate sensor substrate is also used to monitor the temperature dependence of the response to nitrogen dioxide. The results are discussed in light of recent literature on carbon nanotube and graphene sensors.

Journal ArticleDOI
TL;DR: The first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains are reported, elucidate the ripple formation process and can be understood in terms of classical thin-film elasticity theory.
Abstract: Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials The ability to control ripple structure in graphene could allow device design based on local strain and selective bandgap engineering Here, we report the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and making use of graphene's negative thermal expansion coefficient (TEC), which we measure to be much larger than that of graphite These results elucidate the ripple formation process, which can be understood in terms of classical thin-film elasticity theory This should lead to an improved understanding of suspended graphene devices, a controlled engineering of thermal stress in large-scale graphene electronics, and a systematic investigation of the effect of ripples on the electronic properties of graphene

Journal ArticleDOI
Longhua Tang1, Ying Wang1, Yueming Li1, Hongbing Feng1, Jin Lu1, Jinghong Li1 
TL;DR: In this article, the preparation, characterization, and electrochemical properties of reduced graphene sheet films (rGSFs), investigating especially their electrochemical behavior for several redox systems and electrocatalytic properties towards oxygen and some small molecules.
Abstract: This paper describes the preparation, characterization, and electrochemical properties of reduced graphene sheet films (rGSFs), investigating especially their electrochemical behavior for several redox systems and electrocatalytic properties towards oxygen and some small molecules. The reduced graphene sheets (rGSs) are produced in high yield by a soft chemistry route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction. Transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy clearly demonstrate that graphene was successfully synthesized and modified at the surface of a glassy carbon electrode. Several redox species, such as Ru(NH3)63+/2+, Fe(CN)63−/4−, Fe3+/2+ and dopamine, are used to probe the electrochemical properties of these graphene films by using the cyclic voltammetry method. The rGSFs demonstrate fast electron-transfer (ET) kinetics and possess excellent electrocatalytic activity toward oxygen reduction and certain biomolecules. In our opinion, this microstructural and electrochemical information can serve as an important benchmark for graphene-based electrode performances.

Journal ArticleDOI
TL;DR: The direct chemical synthesis of carbon nanosheets in gram-scale quantities in a bottom-up approach based on the common laboratory reagents ethanol and sodium is reported, yielding a fused array of graphene sheets that are dispersed by mild sonication.
Abstract: Carbon nanostructures have emerged as likely candidates for a wide range of applications, driving research into novel synthetic techniques to produce nanotubes, graphene and other carbon-based materials. Single sheets of pristine graphene have been isolated from bulk graphite in small amounts by micromechanical cleavage1, and larger amounts of chemically modified graphene sheets have been produced by a number of approaches2,3,4,5,6,7. Both of these techniques make use of highly oriented pyrolitic graphite as a starting material and involve labour-intensive preparations. Here, we report the direct chemical synthesis of carbon nanosheets in gram-scale quantities in a bottom-up approach based on the common laboratory reagents ethanol and sodium, which are reacted to give an intermediate solid that is then pyrolized, yielding a fused array of graphene sheets that are dispersed by mild sonication. The ability to produce bulk graphene samples from non-graphitic precursors with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. Most techniques for producing graphene use graphite as a starting material and are labour-intensive. The direct chemical synthesis of carbon nanosheets in gram-scale quantities from the common laboratory reagents ethanol and sodium has now been demonstrated. The ability to produce bulk graphene samples from non-graphitic precursors with a scalable, low-cost approach should take us a step closer to real-world applications of graphene.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a cleaning process that verifiably removes the contamination on the device structure and allows the intrinsic chemical responses of the graphene monolayer to be measured.
Abstract: Graphene is a two-dimensional material with extremely favorable chemical sensor properties. Conventional nanolithography typically leaves a resist residue on the graphene surface, whose impact on the sensor characteristics has not yet been determined. Here we show that the contamination layer chemically dopes the graphene, enhances carrier scattering, and acts as an absorbent layer that concentrates analyte molecules at the graphene surface, thereby enhancing the sensor response. We demonstrate a cleaning process that verifiably removes the contamination on the device structure and allows the intrinsic chemical responses of the graphene monolayer to be measured. These intrinsic responses are surprisingly small, even upon exposure to strong analytes such as ammonia vapor.

Journal ArticleDOI
09 Jul 2009-Langmuir
TL;DR: Graphene sheets produced through chemical exfoliation of natural graphite flake and hydrazine conversion are found to be hydrophilic and hydrophobic, and isolated graphene layers seem more difficult to wet in comparison to graphite, and low adhesion work was found in the graphene-liquid interface.
Abstract: Graphene sheets were produced through chemical exfoliation of natural graphite flake and hydrazine conversion. Subsequently, graphene sheets were assembled into a thin film, and microscale liquid droplets were placed onto the film surface for measurement of wettability and contact angle. It is found that a graphene oxide sheet is hydrophilic and a graphene sheet is hydrophobic. Isolated graphene layers seem more difficult to wet in comparison to graphite, and low adhesion work was found in the graphene-liquid interface. Approximation of solid-liquid interfacial energy with the equation of state theory was applied to determine the graphene surface energy. The results indicate that surface energy of graphene and graphene oxide is 46.7 and 62.1 mJ/m2, respectively, while natural graphite flake shows a surface free energy of 54.8 mJ/m2 at room temperature. These results will provide valuable guidance for the design and manufacturing of graphene-based biomaterials, medical instruments, structural composites, electronics, and renewable energy devices.

Journal ArticleDOI
TL;DR: In this article, annealing of the graphene oxide/TiO2 thin films at 400 °C in air resulted in partial formation of a Ti−C bond between the platelets and their beneath thin film.
Abstract: Graphene oxide platelets synthesized by using a chemical exfoliation method were deposited on anatase TiO2 thin films. Postannealing of the graphene oxide/TiO2 thin films at 400 °C in air resulted in partial formation of a Ti−C bond between the platelets and their beneath thin film. By using atomic force microscopy and X-ray photoelectron spectroscopy analyses, UV−visible light-induced photocatalytic reduction of the graphene oxide platelets of the annealed graphene oxide/TiO2 thin films immersed in ethanol was studied for the different irradiation times. After 4 h of photocatalytic reduction, the vertical space between the platelets decreased from about 1.1 to less than 0.8 nm and the concentration of the C═O bond was reduced 85%, indicating effective reduction of the graphene oxide platelets to the graphene ones. The graphene oxide/TiO2 thin films reduced at different irradiation times were utilized as nanocomposite photocatalysts for degradation of E. coli bacteria in an aqueous solution under solar li...

Journal ArticleDOI
Jianfeng Shen1, Yizhe Hu1, Min Shi1, Xin Lu1, Chen Qin1, Chen Li1, Mingxin Ye1 
TL;DR: In this article, an inexpensive, massively scalable, fast, and facile method for preparation of graphite oxide and reduced graphene oxide nanoplatelets is reported, which is based on the generation of oxygen-containing groups on graphene sheets.
Abstract: In this study, we report an inexpensive, massively scalable, fast, and facile method for preparation of graphene oxide and reduced graphene oxide nanoplatelets. The basic strategy involved the preparation of graphite oxide (GO) from graphite through reaction with benzoyl peroxide (BPO), complete exfoliation of GO into graphene oxide sheets, followed by their in situ reduction to reduced graphene oxide nanoplatelets. The mechanism of graphene oxide producing is mainly the generation of oxygen-containing groups on graphene sheets. In addition, inserted BPO and expansion of CO2 evolved during reaction will expand the distance between graphite layers, which are also main factors for exfoliation. Thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy indicated the successful preparation of GO. X-ray diffraction proved the mechanism of intercalation and exfoliation of graphite. Transmission electron microscopy and atomic force microscopy were used to demonstrate the structur...

Journal ArticleDOI
TL;DR: In this article, the authors show that the presence of oxygen functionalities at the graphene surface provides reactive sites for the nucleation and growth of gold nanoparticles, which are effectively grown at functionalized graphene surfaces using a simple chemical method in aqueous medium.
Abstract: Graphene sheets, which possess unique nanostructure and a variety of fascinating properties, are considered as promising nanoscale building blocks of new nanocomposites, namely as a support material for the dispersion of metal nanoparticles. One of the methodologies used to prepare graphene sheets is the chemical exfoliation of graphite in aqueous medium, which produces oxygen functionalized graphene sheets. Here, we show that the presence of oxygen functionalities at the graphene surface provides reactive sites for the nucleation and growth of gold nanoparticles. Gold nanoparticles are effectively grown at functionalized graphene surfaces using a simple chemical method in aqueous medium. The nucleation and growth mechanism depends on the degree of oxygen functionalization at the graphene surface sheets, no gold nanoparticles are obtained at totally reduced graphene surfaces. Additionally, our studies indicate that the graphene/gold nanocomposites are potential substrates for SERS (surface enhanced Raman ...

Journal ArticleDOI
TL;DR: Solvothermal reduction removed oxygen and defects from graphene sheets, increased the size of sp(2) domains, and produced materials that were as conducting as pristine graphene and exhibited clear intrinsic Dirac behavior.
Abstract: We have developed a solvothermal reduction method that affords more effective reduction of chemically derived graphene sheets and graphite oxide than low-temperature reduction methods. Solvothermal reduction removed oxygen and defects from graphene sheets, increased the size of sp2 domains, and produced materials that were as conducting as pristine graphene and exhibited clear intrinsic Dirac behavior.

Journal ArticleDOI
TL;DR: In this article, a novel high performance electrode material based on fibrillar polyaniline (PANI) doped with graphene oxide sheets was synthesized via in situ polymerization of monomer in the presence of graphene oxide, with a high conductivity of 10 S cm −1 at 22°C for the obtained nanocomposite with a mass ratio of aniline/graphite oxide, 100:1.

Journal ArticleDOI
TL;DR: Coupling a spray-coating technique with a facile, low-cost, efficient and environmentally friendly electrochemical method may realize the controllable synthesis of large-area and patterned electrochemically reduced graphene oxide films on various conductive and insulating substrates with thicknesses ranging from a single monolayer to several microns.
Abstract: Have you seen the film? Coupling a spray-coating technique with a facile, low-cost, efficient and environmentally friendly electrochemical method may realize the controllable synthesis of large-area and patterned electrochemically reduced graphene oxide films on various conductive and insulating substrates with thicknesses ranging from a single monolayer to several microns (see figure).


Journal ArticleDOI
TL;DR: Graphene flakes with controlled thicknesses are isolated in solution using density gradient ultracentrifugation, which results in graphene-surfactant complexes having buoyant densities that vary with graphene thickness.
Abstract: Graphene flakes with controlled thicknesses are isolated in solution using density gradient ultracentrifugation. These stable graphene dispersions are produced using the bile salt sodium cholate, which promotes graphite exfoliation and results in graphene−surfactant complexes having buoyant densities that vary with graphene thickness. The sorted graphene flakes are characterized using atomic force microscopy and Raman spectroscopy. Graphene dispersions produced using density differentiation offer superior performance in transparent conductors than those produced using conventional sedimentation-based centrifugation techniques.

Journal ArticleDOI
TL;DR: In this paper, a straightforward one-step chemical method to in situ synthesis of Ag nanoparticles (Ag NPs) on single-layer graphene oxide and reduced graphene oxide (r-GO) surfaces is proposed.
Abstract: A straightforward one-step chemical method to in situ synthesis of Ag nanoparticles (Ag NPs) on single-layer graphene oxide (GO) and reduced graphene oxide (r-GO) surfaces is proposed. After simply heating the single-layer GO or r-GO adsorbed on 3-aminopropyltriethoxysilane (APTES)-modified Si/SiOx substrates in a silver nitrate aqueous solution at 75 °C, Ag NPs are synthesized and grow on the GO or r-GO surface. The obtained Ag NPs are investigated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Our method is unique and important since no reducing agent is required in the reaction. Au NPs on a GO surface are obtained by simply immersing the obtained Ag NPs on the GO surface in HAuCl4 solution.